
## Lori A Burns

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8546970/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | The <scp>MolSSI</scp> QCA <scp>rchive</scp> project: An openâ€source platform to compute, organize,<br>and share quantum chemistry data. Wiley Interdisciplinary Reviews: Computational Molecular Science,<br>2021, 11, e1491.           | 6.2 | 42        |
| 2  | Optimized damping parameters for empirical dispersion corrections to symmetry-adapted perturbation theory. Journal of Chemical Physics, 2021, 154, 234107.                                                                               | 1.2 | 3         |
| 3  | Quantum Chemistry Common Driver and Databases (QCDB) and Quantum Chemistry Engine<br>(QCE <scp>ngine</scp> ): Automation and interoperability among computational chemistry programs.<br>Journal of Chemical Physics, 2021, 155, 204801. | 1.2 | 15        |
| 4  | Python implementation of the restrained electrostatic potential charge model. International Journal of Quantum Chemistry, 2020, 120, e26035.                                                                                             | 1.0 | 17        |
| 5  | P <scp>SI4</scp> 1.4: Open-source software for high-throughput quantum chemistry. Journal of<br>Chemical Physics, 2020, 152, 184108.                                                                                                     | 1.2 | 440       |
| 6  | Efficient and automated computation of accurate molecular geometries using focal-point approximations to large-basis coupled-cluster theory. Journal of Chemical Physics, 2020, 152, 124109.                                             | 1.2 | 15        |
| 7  | CrystaLattE: Automated computation of lattice energies of organic crystals exploiting the many-body expansion to achieve dual-level parallelism. Journal of Chemical Physics, 2019, 151, 144103.                                         | 1.2 | 14        |
| 8  | P <scp>si</scp> 4N <scp>um</scp> P <scp>y</scp> : An Interactive Quantum Chemistry Programming<br>Environment for Reference Implementations and Rapid Development. Journal of Chemical Theory and<br>Computation, 2018, 14, 3504-3511.   | 2.3 | 106       |
| 9  | <scp>Psi4</scp> 1.1: An Open-Source Electronic Structure Program Emphasizing Automation, Advanced<br>Libraries, and Interoperability. Journal of Chemical Theory and Computation, 2017, 13, 3185-3197.                                   | 2.3 | 961       |
| 10 | The BioFragment Database (BFDb): An open-data platform for computational chemistry analysis of noncovalent interactions. Journal of Chemical Physics, 2017, 147, 161727.                                                                 | 1.2 | 82        |
| 11 | Comparison of Explicitly Correlated Methods for Computing High-Accuracy Benchmark Energies for Noncovalent Interactions. Journal of Chemical Theory and Computation, 2017, 13, 86-99.                                                    | 2.3 | 48        |
| 12 | Revised Damping Parameters for the D3 Dispersion Correction to Density Functional Theory. Journal of Physical Chemistry Letters, 2016, 7, 2197-2203.                                                                                     | 2.1 | 305       |
| 13 | Counterion and Substrate Effects on Barrier Heights of the Hydrolytic Kinetic Resolution of Terminal Epoxides Catalyzed by Co(III)-salen. Journal of Physical Chemistry A, 2015, 119, 403-409.                                           | 1.1 | 9         |
| 14 | Appointing silver and bronze standards for noncovalent interactions: A comparison of spin-component-scaled (SCS), explicitly correlated (F12), and specialized wavefunction approaches. Journal of Chemical Physics, 2014, 141, 234111.  | 1.2 | 81        |
| 15 | Levels of symmetry adapted perturbation theory (SAPT). I. Efficiency and performance for interaction energies. Journal of Chemical Physics, 2014, 140, 094106.                                                                           | 1.2 | 589       |
| 16 | Comparing Counterpoise-Corrected, Uncorrected, and Averaged Binding Energies for Benchmarking Noncovalent Interactions. Journal of Chemical Theory and Computation, 2014, 10, 49-57.                                                     | 2.3 | 166       |
| 17 | Redox-Linked Conformational Control of Proton-Coupled Electron Transfer: Y122 in the<br>Ribonucleotide Reductase β2 Subunit. Journal of Physical Chemistry B, 2013, 117, 8457-8468.                                                      | 1.2 | 18        |
| 18 | Buckyplates and Buckybowls: Examining the Effects of Curvature on π–π Interactions. Journal of<br>Physical Chemistry A. 2012. 116. 11920-11926.                                                                                          | 1.1 | 58        |

Lori A Burns

| #  | Article                                                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Psi4: an openâ€source <i>ab initio</i> electronic structure program. Wiley Interdisciplinary Reviews:<br>Computational Molecular Science, 2012, 2, 556-565.                                                                                                                                          | 6.2 | 838       |
| 20 | Basis set convergence of the coupled-cluster correction, \$delta<br>_{ext{MP2}}^{ext{CCSD(T)}}\$Î'MP2CCSD(T): Best practices for benchmarking non-covalent<br>interactions and the attendant revision of the S22, NBC10, HBC6, and HSG databases. Journal of<br>Chemical Physics, 2011, 135, 194102. | 1.2 | 295       |
| 21 | Assessment of the Performance of DFT and DFT-D Methods for Describing Distance Dependence of Hydrogen-Bonded Interactions. Journal of Chemical Theory and Computation, 2011, 7, 88-96.                                                                                                               | 2.3 | 388       |
| 22 | Density-functional approaches to noncovalent interactions: A comparison of dispersion corrections<br>(DFT-D), exchange-hole dipole moment (XDM) theory, and specialized functionals. Journal of Chemical<br>Physics, 2011, 134, 084107.                                                              | 1.2 | 607       |
| 23 | An Error and Efficiency Analysis of Approximations to MÃ,llerâ^Plesset Perturbation Theory. Journal of Chemical Theory and Computation, 2010, 6, 3681-3687.                                                                                                                                          | 2.3 | 12        |
| 24 | Electronic Structure and Proton Transfer in Ground-State Hexafluoroacetylacetone. Journal of<br>Physical Chemistry A, 2010, 114, 6630-6640.                                                                                                                                                          | 1.1 | 13        |
| 25 | Double proton transfer in the and states of the tropolone • HF complex. Molecular Physics, 2010, 108, 1171-1190.                                                                                                                                                                                     | 0.8 | 2         |
| 26 | Vibrational specificity of proton-transfer dynamics in ground-state tropolone. Physical Chemistry<br>Chemical Physics, 2010, 12, 8285.                                                                                                                                                               | 1.3 | 23        |
| 27 | An exploration of electronic structure and nuclear dynamics in tropolone: II. The Ã B12 (Ï€â^—Ï€) excited state. Journal of Chemical Physics, 2009, 130, 144304.                                                                                                                                     | 1.2 | 23        |
| 28 | Dissection of Rovibronic Structure by Polarization-Resolved Two-Color Resonant Four-Wave Mixing Spectroscopy. Journal of Physical Chemistry A, 2009, 113, 13184-13198.                                                                                                                               | 1.1 | 9         |
| 29 | Mode-specific tunneling dynamics in the ground electronic state of tropolone. Journal of Chemical Physics, 2007, 127, 081101.                                                                                                                                                                        | 1.2 | 11        |
| 30 | Investigation of electronic structure and proton transfer in ground state acetylacetone. Chemical Physics Letters, 2007, 434, 31-37.                                                                                                                                                                 | 1.2 | 25        |
| 31 | An exploration of electronic structure and nuclear dynamics in tropolone. I. The XÌfA11 ground state.<br>Journal of Chemical Physics, 2006, 124, 204307.                                                                                                                                             | 1.2 | 21        |
| 32 | Color-blind fluorescence detection for four-color DNA sequencing. Proceedings of the National<br>Academy of Sciences of the United States of America, 2005, 102, 5346-5351.                                                                                                                          | 3.3 | 39        |