Hua Li

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8546911/hua-li-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

71	2,405	25	48
papers	citations	h-index	g-index
75 ext. papers	3,130 ext. citations	6.7 avg, IF	5.39 L-index

#	Paper	IF	Citations
71	Dual-network sodium alginate/polyacrylamide/laponite nanocomposite hydrogels with high toughness and cyclic mechano-responsiveness. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2022 , 633, 127867	5.1	2
70	Harvesting yolk-shell nanocomposites from Fe-MIL-101 self-template in NaCl/KCl molten salt environment for high-performance microwave absorber. <i>Chemical Engineering Journal</i> , 2021 , 133112	14.7	2
69	Ionic Conductive Organohydrogels with Dynamic Pattern Behavior and Multi-Environmental Stability. <i>Advanced Functional Materials</i> , 2021 , 31, 2101464	15.6	26
68	Reversible Writing/Re-Writing Polymeric Paper in Multiple Environments. <i>Advanced Functional Materials</i> , 2021 , 31, 2104784	15.6	8
67	Tailoring conductive network nanostructures of ZIF-derived cobalt-decorated N-doped graphene/carbon nanotubes for microwave absorption applications. <i>Journal of Colloid and Interface Science</i> , 2021 , 591, 463-473	9.3	24
66	Multiple-Stimuli-Responsive and Cellulose Conductive Ionic Hydrogel for Smart Wearable Devices and Thermal Actuators. <i>ACS Applied Materials & Devices and Thermal Actuators</i> . <i>ACS Applied Materials & Devices and Thermal Actuators</i> .	9.5	37
65	High-energy-density shape memory materials with ultrahigh strain for reconfigurable artificial muscles. <i>Journal of Materials Chemistry B</i> , 2021 , 9, 7371-7380	7.3	1
64	Dual-gradient PNIPAM-based hydrogel capable of rapid response and tunable actuation. <i>Chemical Engineering Journal</i> , 2021 , 424, 130562	14.7	9
63	Ferromagnetic TiCNCl-decorated RGO aerogel: From 3D interconnecting conductive network construction to ultra-broadband microwave absorber with thermal insulation property. <i>Journal of Colloid and Interface Science</i> , 2021 , 604, 402-414	9.3	6
62	Multifunctional conductive hydrogels and their applications as smart wearable devices. <i>Journal of Materials Chemistry B</i> , 2021 , 9, 2561-2583	7.3	40
61	Multiresponse Shape-Memory Nanocomposite with a Reversible Cycle for Powerful Artificial Muscles. <i>Chemistry of Materials</i> , 2021 , 33, 987-997	9.6	20
60	Fabrication of CoIn stannate (CoxZn1-xSnO3) hollow balls based 3D rGO aerogels with excellent electromagnetic wave absorption properties. <i>Journal of Alloys and Compounds</i> , 2020 , 845, 156165	5.7	11
59	Ultralight, flexible carbon hybrid aerogels from bacterial cellulose for strong microwave absorption. <i>Carbon</i> , 2020 , 162, 283-291	10.4	36
58	Phase investigation and crystal structure analysis of zinc stannate (Zn2SnO4). <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2020 , 384, 126205	2.3	3
57	A Biocompatible, Stimuli-Responsive, and Injectable Hydrogel with Triple Dynamic Bonds. <i>Molecules</i> , 2020 , 25,	4.8	5
56	Surface-hydrophilic-modified carbon aerogels via surface-initiated electrochemically mediated atom transfer radical polymerization for high-performance supercapacitors. <i>Journal of Materials Science: Materials in Electronics</i> , 2020 , 31, 21379-21388	2.1	
55	Shape-Memory Polymeric Artificial Muscles: Mechanisms, Applications and Challenges. <i>Molecules</i> , 2020 , 25,	4.8	17

(2018-2019)

54	polycaprolactone/thermoplastic polyurethane composites. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2019 , 580, 123731	5.1	27
53	A fast self-healing and conductive nanocomposite hydrogel as soft strain sensor. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2019 , 567, 139-149	5.1	64
52	A graphene oxide and functionalized carbon nanotube based semi-open cellular network for sound absorption. <i>Soft Matter</i> , 2019 , 15, 2269-2276	3.6	20
51	Electrodeposition behavior of lithium metal on carbon substrates with surface silvering. <i>Carbon</i> , 2019 , 152, 503-510	10.4	10
50	High-cycle-life and high-loading copolymer network with potential application as a soft actuator. <i>Materials and Design</i> , 2019 , 182, 108010	8.1	9
49	Fast and Efficient Electric-Triggered Self-Healing Shape Memory of CNTs@rGO Enhanced PCLPLA Copolymer. <i>Macromolecular Chemistry and Physics</i> , 2019 , 220, 1900281	2.6	5
48	S-Doped ZnSnO3 Nanoparticles with Narrow Band Gaps for Photocatalytic Wastewater Treatment. <i>ACS Applied Nano Materials</i> , 2019 , 2, 7755-7765	5.6	13
47	Fe/N-Codoped Hollow Carbonaceous Nanospheres Anchored on Reduced Graphene Oxide for Microwave Absorption. <i>ACS Applied Nano Materials</i> , 2019 , 2, 8063-8074	5.6	25
46	Facile fabrication of polyurethane-based graphene foam/lead zirconate titanate/polydimethylsiloxane composites with good damping performance <i>RSC Advances</i> , 2018 , 8, 7916-7923	3.7	8
45	High loss factor piezoelectric damping composite with three-dimensional reduced graphene oxide as the conductive phase <i>RSC Advances</i> , 2018 , 8, 12494-12502	3.7	3
44	Facile synthesis of three-dimensional lightweight nitrogen-doped graphene aerogel with excellent electromagnetic wave absorption properties. <i>Journal of Materials Science</i> , 2018 , 53, 4067-4077	4.3	41
43	3D composites of ZnSnO3 nanoplates/reduced graphene oxide aerogels as an advanced lithium-ion battery anode. <i>Journal of Materials Science: Materials in Electronics</i> , 2018 , 29, 5299-5306	2.1	9
42	MOF-Derived Hollow Co3S4 Quasi-polyhedron/MWCNT Nanocomposites as Electrodes for Advanced Lithium Ion Batteries and Supercapacitors. <i>ACS Applied Energy Materials</i> , 2018 , 1, 402-410	6.1	49
41	Porous Co-C Core-Shell Nanocomposites Derived from Co-MOF-74 with Enhanced Electromagnetic Wave Absorption Performance. <i>ACS Applied Materials & Design Company Compan</i>	9.5	240
40	Facile fabrication of polyurethane/epoxy IPNs filled graphene aerogel with improved damping, thermal and mechanical properties <i>RSC Advances</i> , 2018 , 8, 27390-27399	3.7	5
39	CoSe/Co nanoparticles wrapped by in situ grown N-doped graphitic carbon nanosheets as anode material for advanced lithium ion batteries. <i>Journal of Power Sources</i> , 2018 , 399, 223-230	8.9	45
38	Low-Weight 3D Al O Network as an Artificial Layer to Stabilize Lithium Deposition. <i>ChemSusChem</i> , 2018 , 11, 3243-3252	8.3	18
37	High-Coulombic-Efficiency Carbon/Li Clusters Composite Anode without Precycling or Prelithiation. <i>Small</i> , 2018 , 14, e1802226	11	15

36	Self-Healing Shape Memory PUPCL Copolymer with High Cycle Life. <i>Advanced Functional Materials</i> , 2018 , 28, 1704109	15.6	63
35	Oriented growth of Li metal for stable Li/carbon composite negative electrode. <i>Electrochimica Acta</i> , 2018 , 292, 227-233	6.7	11
34	Ultratough, Self-Healing, and Tissue-Adhesive Hydrogel for Wound Dressing. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 33523-33531	9.5	216
33	Facile Fabrication of Three-Dimensional Lightweight RGO/PPy Nanotube/FeO Aerogel with Excellent Electromagnetic Wave Absorption Properties. <i>ACS Omega</i> , 2018 , 3, 5735-5743	3.9	45
32	Synthesis of Orthorhombic Perovskite-Type ZnSnO Single-Crystal Nanoplates and Their Application in Energy Harvesting. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 8271-8279	9.5	64
31	Facile preparation of high-quality perovskites for efficient solar cells via a fast conversion of wet PbI2 precursor films. <i>RSC Advances</i> , 2017 , 7, 22492-22500	3.7	19
30	Reaction mechanisms of lithium garnet pellets in ambient air: The effect of humidity and CO2. Journal of the American Ceramic Society, 2017 , 100, 2832-2839	3.8	108
29	Facile fabrication of ultra-light and highly resilient PU/RGO foams for microwave absorption. <i>RSC Advances</i> , 2017 , 7, 41321-41329	3.7	15
28	A three dimensional sulfur/reduced graphene oxide with embedded carbon nanotubes composite as a binder-free, free-standing cathode for lithium allfur batteries. <i>RSC Advances</i> , 2017 , 7, 43483-43490	3.7	3
27	Characterization of the damping and mechanical properties of a novel (ZnSnO3/PVDF)@PPy nanofibers/EP composite. <i>RSC Advances</i> , 2017 , 7, 37130-37138	3.7	7
26	Fabricating fast triggered electro-active shape memory graphite/silver nanowires/epoxy resin composite from polymer template. <i>Scientific Reports</i> , 2017 , 7, 5535	4.9	21
25	The effect of annealing on a 3D SnO2/graphene foam as an advanced lithium-ion battery anode. <i>Scientific Reports</i> , 2016 , 6, 19195	4.9	100
24	3D composites of layered MoS2 and graphene nanoribbons for high performance lithium-ion battery anodes. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 13148-13154	13	42
23	Stretchable, strong and self-healing hydrogel by oxidized CNT-polymer composite. <i>Composites Part A: Applied Science and Manufacturing</i> , 2016 , 90, 250-260	8.4	18
22	Three dimensional Graphene aerogels as binder-less, freestanding, elastic and high-performance electrodes for lithium-ion batteries. <i>Scientific Reports</i> , 2016 , 6, 27365	4.9	45
21	A facile method to fabricate polyurethane based graphene foams/epoxy/carbon nanotubes composite for electro-active shape memory application. <i>Composites Part A: Applied Science and Manufacturing</i> , 2016 , 91, 292-300	8.4	31
20	Enhanced Photovoltaic Performance of Perovskite Solar Cells Using Polymer P(VDF-TrFE) as a Processed Additive. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 12980-12988	3.8	62
19	Size-controlled synthesis of BiFeO3 nanoparticles by a facile and stable solgel method. <i>Journal of Materials Science: Materials in Electronics</i> , 2016 , 27, 10803-10809	2.1	5

Continuously enhanced photoactivity of hierarchical Bi2O3/Bi2S3 heterostructure derived from novel BiO2CH3 octagonal nanoplates. <i>Applied Catalysis A: General</i> , 2016 , 514, 146-153	5.1	24
Ionic Conductivity and Air Stability of Al-Doped Lillal rolls intered in Alumina and Pt Crucibles. ACS Applied Materials & Samp; Interfaces, 2016, 8, 5335-42	9.5	173
New strategy to rescue the inhibition of osteogenesis of human bone marrow-derived mesenchymal stem cells under oxidative stress: combination of vitamin C and graphene foams. <i>Oncotarget</i> , 2016 , 7, 71998-72010	3.3	12
Electron beam curing of poly(ethylene glycol) diglycidyl ether-functionalized MWNTs/epoxy composites. <i>Journal of Composite Materials</i> , 2016 , 50, 1595-1602	2.7	2
Oxygen vacancies induced self-assembling synthesis of V 4+ -BiVO 4 /rGO core-shell nanorods with enhanced water splitting efficiency and superior sewage purification capability. <i>Applied Catalysis A: General</i> , 2016 , 526, 105-112	5.1	11
A green method to prepare TiO2/MWCNT nanocomposites with high photocatalytic activity and insights into the effect of heat treatment on photocatalytic activity. <i>RSC Advances</i> , 2015 , 5, 13430-1343	ક <i>હે</i> .7	19
Electro-active shape memory composites enhanced by flexible carbon nanotube/graphene aerogels. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 11641-11649	13	71
Intrinsically Atomic-oxygen-resistant POSS-containing Polyimide Aerogels: Synthesis and Characterization. <i>Chemistry Letters</i> , 2015 , 44, 1083-1085	1.7	16
Fabrication of ultralight three-dimensional graphene networks with strong electromagnetic wave absorption properties. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 3739-3747	13	178
Facile synthesis of V(4+) self-doped, [010] oriented BiVO4 nanorods with highly efficient visible light-induced photocatalytic activity. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 24519-26	3.6	110
Photoelectrochemical response and electronic structure analysis of mono-dispersed cuboid-shaped Bi2Fe4O9 crystals with near-infrared absorption. <i>RSC Advances</i> , 2014 , 4, 28209-28218	3.7	24
Photovoltaic effect of TiO2 thick films with an ultrathin BiFeO3 as buffer layer. <i>Applied Physics A: Materials Science and Processing</i> , 2014 , 117, 1301-1306	2.6	4
Preparation and Dielectric Characteristics of Semitransparent CoFe2O4P(VDF-TrFE) Nanocomposite Films. <i>Journal of Electronic Materials</i> , 2013 , 42, 734-738	1.9	1
Mechanical properties of 3-glycidoxypropyltrimethoxysilane functionalized multi-walled carbon nanotubes/epoxy composites cured by electron beam irradiation. <i>Journal of Composite Materials</i> , 2013 , 47, 1685-1694	2.7	6
Superior volumetric capacitance of nitrogen and fluorine Co-doped holey graphene/PANI composite film for supercapacitor electrodes. <i>Journal of Materials Research</i> ,1	2.5	1
Facile synthesis and high volumetric capacitance of holey graphene film for supercapacitor electrodes with optimizing preparation conditions. <i>Soft Materials</i> ,1-12	1.7	
Mechanisms and applications of bioinspired underwater/wet adhesives. Journal of Polymer Science,	2.4	11
Paper-Structure Inspired Multiresponsive Hydrogels with Solvent-Induced Reversible Information Recording, Self-Encryption, and Multidecryption. <i>Advanced Functional Materials</i> ,2201009	15.6	12
	Ionic Conductivity and Air Stability of Al-Doped Lilla@r@lSintered in Alumina and Pt Crucibles. ACS Applied Materials & Amp. Interfaces. 2016, 8, 5335-42 New strategy to rescue the inhibition of osteogenesis of human bone marrow-derived mesenchymal stem cells under oxidative stress: combination of vitamin C and graphene foams. Oncotarget, 2016, 7, 71998-72010 Electron beam curing of poly(ethylene glycol) diglycidyl ether-functionalized MWNTs/epoxy composites. Journal of Composite Materials, 2016, 50, 1595-1602 Oxygen vacancies induced self-assembling synthesis of V 4+-BiVO 4 /rGO core-shell nanorods with enhanced water splitting efficiency and superior sewage purification capability. Applied Catalysis A: General, 2016, 526, 105-112 A green method to prepare TiO2/MWCNT nanocomposites with high photocatalytic activity and insights into the effect of heat treatment on photocatalytic activity. RSC Advances, 2015, 5, 13430-1343 Electro-active shape memory composites enhanced by flexible carbon nanotube/graphene aerogels. Journal of Materials Chemistry A, 2015, 3, 11641-11649 Intrinsically Atomic-oxygen-resistant POSS-containing Polyimide Aerogels: Synthesis and Characterization. Chemistry Letters, 2015, 44, 1083-1085 Fabrication of ultralight three-dimensional graphene networks with strong electromagnetic wave absorption properties. Journal of Materials Chemistry A, 2015, 3, 3739-3747 Facile synthesis of V(4+) self-doped, [010] oriented BiVO4 nanorods with highly efficient visible light-induced photocatalytic activity. Physical Chemistry Chemical Physics, 2014, 16, 24519-26 Photoelectrochemical response and electronic structure analysis of mono-dispersed cuboid-shaped Bi2Fe4O9 crystals with near-infrared absorption. RSC Advances, 2014, 4, 28209-28218 Photovoltaic effect of TiO2 thick films with an ultrathin BiFeO3 as buffer layer. Applied Physics A: Materials Science and Processing, 2014, 117, 1301-1306 Preparation and Dielectric Characteristics of Semitransparent CoFe2O4P(VDF-TrFE) Nanocomposite Films.	Ionic Conductivity and Air Stability of Al-Doped LillaZrDESintered in Alumina and Pt Crucibles. ACS Applied Materials Kamp, Interfaces, 2016, 8, 5335-42 New Strategy to rescue the inhibition of osteogenesis of human bone marrow-derived mesenchymal stem cells under oxidative stress: combination of vitamin C and graphene foams. Oncotarget, 2016, 7, 71998-72010 Electron beam curing of poly(ethylene glycol) diglycidyl ether-functionalized MWNTs/epoxy composites. Journal of Composite Materials, 2016, 50, 1595-1602 Oxygen vacancies induced self-assembling synthesis of V 4+-BiVO 4 /rGO core-shell nanorods with enhanced water splitting efficiency and superior sewage purification capability. Applied Catalysis A: General, 2016, 526, 105-112 A green method to prepare TiOZ/MWCNT nanocomposites with high photocatalytic activity and insights into the effect of heat treatment on photocatalytic activity. RSC Advances, 2015, 5, 13430-13436-7 Electro-active shape memory composites enhanced by flexible carbon nanotube/graphene aerogels. Journal of Materials Chemistry A, 2015, 3, 11641-11649 13 Intrinsically Atomic-oxygen-resistant POSS-containing Polyimide Aerogels: Synthesis and Characterization. Chemistry Letters, 2015, 44, 1083-1085 Fabrication of ultralight three-dimensional graphene networks with strong electromagnetic wave absorption properties. Journal of Materials Chemistry A, 2015, 3, 3739-3747 13 Facile synthesis of V(4+) self-doped, [010] oriented BiVO4 nanorods with highly efficient visible light-induced photocatalytic activity. Physical Chemistry Chemical Physics, 2014, 16, 24519-26 Photoelectrochemical response and electronic structure analysis of mono-dispersed cuboid-shaped BiZFe4O9 crystals with near-infrared absorption. RSc Advances, 2014, 4, 28209-28218 37 Photovoltaic effect of TiO2 thick films with an ultrathin BiFeO3 as buffer layer. Applied Physics A: Materials Science and Processing, 2014, 117, 1301-1306 Preparation and Dielectric Characteristics of Semitransparent CoFe2O4B(VDF-TrFE) Nanoco