Khaled Parvez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8546683/publications.pdf Version: 2024-02-01

		126858	214721
48	10,814	33	47
papers	citations	h-index	g-index
52	52	52	15976
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	3D Nitrogen-Doped Graphene Aerogel-Supported Fe ₃ O ₄ Nanoparticles as Efficient Electrocatalysts for the Oxygen Reduction Reaction. Journal of the American Chemical Society, 2012, 134, 9082-9085.	6.6	1,967
2	Exfoliation of Graphite into Graphene in Aqueous Solutions of Inorganic Salts. Journal of the American Chemical Society, 2014, 136, 6083-6091.	6.6	1,181
3	Graphene-based in-plane micro-supercapacitors with high power and energy densities. Nature Communications, 2013, 4, 2487.	5.8	1,104
4	Nitrogen-Doped Graphene and Its Iron-Based Composite As Efficient Electrocatalysts for Oxygen Reduction Reaction. ACS Nano, 2012, 6, 9541-9550.	7.3	640
5	Electrochemically Exfoliated Graphene as Solution-Processable, Highly Conductive Electrodes for Organic Electronics. ACS Nano, 2013, 7, 3598-3606.	7.3	532
6	Nitrogenâ€Doped Carbon Nanosheets with Sizeâ€Defined Mesopores as Highly Efficient Metalâ€Free Catalyst for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2014, 53, 1570-1574.	7.2	457
7	Water-based and biocompatible 2D crystal inks for all-inkjet-printed heterostructures. Nature Nanotechnology, 2017, 12, 343-350.	15.6	440
8	Highâ€Performance Electrocatalysts for Oxygen Reduction Derived from Cobalt Porphyrinâ€Based Conjugated Mesoporous Polymers. Advanced Materials, 2014, 26, 1450-1455.	11.1	425
9	Bottom-Up Fabrication of Sulfur-Doped Graphene Films Derived from Sulfur-Annulated Nanographene for Ultrahigh Volumetric Capacitance Micro-Supercapacitors. Journal of the American Chemical Society, 2017, 139, 4506-4512.	6.6	294
10	Alternating Stacked Grapheneâ€Conducting Polymer Compact Films with Ultrahigh Areal and Volumetric Capacitances for Highâ€Energy Microâ€Supercapacitors. Advanced Materials, 2015, 27, 4054-4061.	11.1	290
11	Layerâ€byâ€Layer Assembled Heteroatomâ€Doped Graphene Films with Ultrahigh Volumetric Capacitance and Rate Capability for Microâ€Supercapacitors. Advanced Materials, 2014, 26, 4552-4558.	11.1	289
12	Organic Radical-Assisted Electrochemical Exfoliation for the Scalable Production of High-Quality Graphene. Journal of the American Chemical Society, 2015, 137, 13927-13932.	6.6	288
13	Transparent Conductive Electrodes from Graphene/PEDOT:PSS Hybrid Inks for Ultrathin Organic Photodetectors. Advanced Materials, 2015, 27, 669-675.	11.1	251
14	Ultrathin Printable Graphene Supercapacitors with AC Lineâ€Filtering Performance. Advanced Materials, 2015, 27, 3669-3675.	11.1	237
15	UV-reduction of graphene oxide and its application as an interfacial layer to reduce the back-transport reactions in dye-sensitized solar cells. Chemical Physics Letters, 2009, 483, 124-127.	1.2	228
16	Atomically precise edge chlorination of nanographenes and its application in graphene nanoribbons. Nature Communications, 2013, 4, 2646.	5.8	187
17	Stackedâ€Layer Heterostructure Films of 2D Thiophene Nanosheets and Graphene for Highâ€Rate Allâ€Solidâ€State Pseudocapacitors with Enhanced Volumetric Capacitance. Advanced Materials, 2017, 29, 1602960.	11.1	173
18	Photolithographic fabrication of high-performance all-solid-state graphene-based planar micro-supercapacitors with different interdigital fingers. Journal of Materials Chemistry A, 2014, 2, 8288	5.2	169

Khaled Parvez

#	Article	IF	CITATIONS
19	Bioapplication of graphene oxide derivatives: drug/gene delivery, imaging, polymeric modification, toxicology, therapeutics and challenges. RSC Advances, 2015, 5, 42141-42161.	1.7	164
20	Thermodynamic picture of ultrafast charge transport in graphene. Nature Communications, 2015, 6, 7655.	5.8	147
21	Exfoliation of graphene via wet chemical routes. Synthetic Metals, 2015, 210, 123-132.	2.1	135
22	Bioinspired Waferâ€Scale Production of Highly Stretchable Carbon Films for Transparent Conductive Electrodes. Angewandte Chemie - International Edition, 2013, 52, 5535-5538.	7.2	129
23	Inkjet printed 2D-crystal based strain gauges on paper. Carbon, 2018, 129, 462-467.	5.4	101
24	Assembly and Fiber Formation of a Gemini-Type Hexathienocoronene Amphiphile for Electrical Conduction. Journal of the American Chemical Society, 2013, 135, 13531-13537.	6.6	80
25	Water-based and inkjet printable inks made by electrochemically exfoliated graphene. Carbon, 2019, 149, 213-221.	5.4	73
26	One-step electrochemical synthesis of nitrogen and sulfur co-doped, high-quality graphene oxide. Chemical Communications, 2016, 52, 5714-5717.	2.2	64
27	Raman Fingerprints of Graphene Produced by Anodic Electrochemical Exfoliation. Nano Letters, 2020, 20, 3411-3419.	4.5	59
28	Magnetoresistance and Charge Transport in Graphene Governed by Nitrogen Dopants. ACS Nano, 2015, 9, 1360-1366.	7.3	51
29	Printed graphene/WS ₂ battery-free wireless photosensor on papers. 2D Materials, 2020, 7, 024004.	2.0	51
30	Tuning the Work Function of Graphene-on-Quartz with a High Weight Molecular Acceptor. Journal of Physical Chemistry C, 2014, 118, 4784-4790.	1.5	50
31	Tuning the work function of GaN with organic molecular acceptors. Physical Review B, 2016, 93, .	1.1	40
32	Tuning the Electronic Structure of Graphene by Molecular Dopants: Impact of the Substrate. ACS Applied Materials & Interfaces, 2015, 7, 19134-19144.	4.0	34
33	Long-term stable dye-sensitized solar cells based on UV photo-crosslinkable poly(ethylene glycol) and poly(ethylene glycol) diacrylate based electrolytes. Solar Energy Materials and Solar Cells, 2011, 95, 318-322.	3.0	27
34	Laser Ablation of Poly(lactic acid) Sheets for the Rapid Prototyping of Sustainable, Single-Use, Disposable Medical Microcomponents. ACS Sustainable Chemistry and Engineering, 2018, 6, 4899-4908.	3.2	26
35	Novel photo-crosslinkable polymeric electrolyte system based on poly(ethylene glycol) and trimethylolpropane triacrylate for dye-sensitized solar cell with long-term stability. Electrochimica Acta, 2009, 54, 6306-6311.	2.6	22
36	All-Inkjet-Printed Graphene-Gated Organic Electrochemical Transistors on Polymeric Foil as Highly Sensitive Enzymatic Biosensors. ACS Applied Nano Materials, 2022, 5, 1664-1673.	2.4	22

KHALED PARVEZ

0

#	Article	IF	CITATIONS
37	Comparative study of plasma and ion-beam treatment to reduce the oxygen vacancies in TiO2 and recombination reactions in dye-sensitized solar cells. Chemical Physics Letters, 2010, 495, 69-72.	1.2	20
38	Simultaneous electrochemical-assisted exfoliation and in situ surface functionalization towards large-scale production of few-layer graphene. FlatChem, 2019, 18, 100132.	2.8	19
39	Inkjet-printed graphene Hall mobility measurements and low-frequency noise characterization. Nanoscale, 2020, 12, 6708-6716.	2.8	14
40	Two-Dimensional Nanomaterials: Crystal Structure and Synthesis. , 2019, , 1-25.		11
41	Graphene flakes at the SiO2/organic-semiconductor interface for high-mobility field-effect transistors. Organic Electronics, 2015, 27, 221-226.	1.4	10
42	Molecular Precursor Route to Bournonite (CuPbSbS ₃) Thin Films and Powders. Inorganic Chemistry, 2021, 60, 13691-13698.	1.9	10
43	High-performance deformable photoswitches with p-doped graphene as the top window electrode. Journal of Materials Chemistry C, 2015, 3, 37-40.	2.7	8
44	Synthesis of acetyl imidazolium-based electyrolytes and application for dye-sensitized solar cells. Electrochimica Acta, 2011, 57, 285-289.	2.6	7
45	Oxygen ion-beam irradiation of TiO ₂ films reduces oxygen vacancies and improves performance of dye-sensitized solar cells. Journal of Materials Research, 2011, 26, 1012-1017.	1.2	6
46	Characterization Techniques of Two-Dimensional Nanomaterials. , 2019, , 27-41.		2
47	Ultrafast carrier dynamics in graphene and graphene nanostructures. Terahertz Science & Technology, 2020, 13, 135-148.	0.5	1

48 Nonlinear THz conductivity in graphene., 2014,,.

4