
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8546680/publications.pdf Version: 2024-02-01

HENCYING L

#	Article	IF	CITATIONS
1	A comparison study on single metal atoms (Fe, Co, Ni) within nitrogen-doped graphene for oxygen electrocatalysis and rechargeable Zn-air batteries. Chinese Chemical Letters, 2023, 34, 107681.	4.8	4
2	Isolated Co single atoms in nitrogen-doped graphene for aluminum-sulfur batteries with enhanced kinetic response. Journal of Energy Chemistry, 2022, 67, 354-360.	7.1	16
3	Tuning the local electronic structure of a single-site Ni catalyst by co-doping a 3D graphene framework with B/N atoms toward enhanced CO ₂ electroreduction. Nanoscale, 2022, 14, 833-841.	2.8	9
4	Al ₂ S ₃ Cathode for Rechargeable Aluminumâ€Sulfur Batteries with Improved Cycling Reversibility. Batteries and Supercaps, 2022, 5, .	2.4	4
5	Microfluidic Oxidation of Graphite in Two Minutes with Capability of Realâ€∓ime Monitoring. Advanced Materials, 2022, 34, e2107083.	11.1	13
6	Molecular sieve based Janus separators for Li-ions redistribution to enable stable lithium deposition. Nano Research, 2022, 15, 5143-5152.	5.8	9
7	Regulating Sodium Deposition through Gradientlyâ€Graphitized Framework for Dendriteâ€Free Na Metal Anode. Small, 2022, 18, e2107199.	5.2	16
8	Role of the Metal Atom in a Carbonâ€Based Singleâ€Atom Electrocatalyst for LiS Redox Reactions. Small, 2022, 18, e2200395.	5.2	33
9	Electrochemistry of P–C Bonds in Phosphorus–Carbon Based Anode Materials. ACS Applied Materials & Interfaces, 2022, 14, 18506-18512.	4.0	9
10	Phosphorusâ€Based Anodes for Fast Charging Lithiumâ€Ion Batteries: Challenges and Opportunities. Small Science, 2022, 2, .	5.8	25
11	Cobalt and nitrogen atoms co-doped porous carbon for advanced electrical double-layer capacitors. Chinese Chemical Letters, 2021, 32, 830-833.	4.8	7
12	Monitoring the mechanical properties of the solid electrolyte interphase (SEI) using electrochemical quartz crystal microbalance with dissipation. Chinese Chemical Letters, 2021, 32, 1139-1143.	4.8	18
13	Fundamental Insights into Surface Modification of Silicon Material toward Improved Activity and Durability in Photocatalytic Hydrogen Production: A Case Study of Pre-Lithiation. Journal of Physical Chemistry C, 2021, 125, 5542-5548.	1.5	7
14	Guiding Sodium Deposition through a Sodiophobic–Sodiophilic Gradient Interfacial Layer for Highly Stable Sodium Metal Anodes. ACS Applied Energy Materials, 2021, 4, 2724-2731.	2.5	32
15	TiN nanocrystal anchored on N-doped graphene as effective sulfur hosts for high-performance lithium-sulfur batteries. Journal of Energy Chemistry, 2021, 54, 16-22.	7.1	35
16	Elimination of Grain Boundaries in Graphene Growth on a Cu–Ni Alloyed Substrate by Chemical Vapor Deposition. Journal of Physical Chemistry C, 2021, 125, 18217-18224.	1.5	2
17	Ascorbic acid-assisted defect healing and stack ordering of graphene films towards high power thermal dispersion. Carbon, 2021, 182, 799-805.	5.4	13
18	A rechargeable aqueous aluminum–sulfur battery through acid activation in water-in-salt electrolyte. Chemical Communications, 2020, 56, 2023-2026.	2.2	64

#	Article	IF	CITATIONS
19	A Black Phosphorus–Graphite Composite Anode for Liâ€∤Naâ€∤Kâ€Ion Batteries. Angewandte Chemie, 2020, 13 2338-2342.	2 _{1.6}	21
20	A Black Phosphorus–Graphite Composite Anode for Liâ€∤Naâ€∤Kâ€Ion Batteries. Angewandte Chemie - International Edition, 2020, 59, 2318-2322.	7.2	84
21	Black phosphorus composites with engineered interfaces for high-rate high-capacity lithium storage. Science, 2020, 370, 192-197.	6.0	336
22	Redistribution of Li-ions using covalent organic frameworks towards dendrite-free lithium anodes: a mechanism based on a Galton Board. Science China Chemistry, 2020, 63, 1306-1314.	4.2	32
23	Highly sensitive flexible pressure sensors based on graphene/graphene scrolls multilayer hybrid films. Chinese Journal of Chemical Physics, 2020, 33, 365-370.	0.6	2
24	lon transport in porous carbon electrode for supercapacitors probed by electrochemical quartz crystal microbalance. Electrochimica Acta, 2020, 356, 136780.	2.6	6
25	Rechargeable Aluminium–Sulfur Battery with Improved Electrochemical Performance by Cobalt ontaining Electrocatalyst. Angewandte Chemie - International Edition, 2020, 59, 22963-22967.	7.2	43
26	Rechargeable Aluminium–Sulfur Battery with Improved Electrochemical Performance by Cobalt ontaining Electrocatalyst. Angewandte Chemie, 2020, 132, 23163-23167.	1.6	15
27	Graphene foil as a current collector for NCM material-based cathodes. Nanotechnology, 2020, 31, 205710.	1.3	13
28	Large-area, periodic, and tunable intrinsic pseudo-magnetic fields in low-angle twisted bilayer graphene. Nature Communications, 2020, 11, 371.	5.8	66
29	Piezoelectric Materials as Sonodynamic Sensitizers to Safely Ablate Tumors: A Case Study Using Black Phosphorus. Journal of Physical Chemistry Letters, 2020, 11, 1228-1238.	2.1	105
30	Solid–Solution-Based Metal Alloy Phase for Highly Reversible Lithium Metal Anode. Journal of the American Chemical Society, 2020, 142, 8818-8826.	6.6	199
31	Azide Passivation of Black Phosphorus Nanosheets: Covalent Functionalization Affords Ambient Stability Enhancement. Angewandte Chemie, 2019, 131, 1493-1497.	1.6	23
32	lsotropic charge screening of anisotropic black phosphorus revealed by potassium adatoms. Physical Review B, 2019, 100, .	1.1	7
33	Identification of graphene oxide and its structural features in solvents by optical microscopy. RSC Advances, 2019, 9, 18559-18564.	1.7	1
34	Vacuum Filtrationâ€andâ€Transfer Technique Helps Electrochemical Quartz Crystal Microbalance to Reveal Accurate Charge Storage in Supercapacitors. Small Methods, 2019, 3, 1900246.	4.6	21
35	Synergy of Black Phosphorus–Graphite–Polyaniline-Based Ternary Composites for Stable High Reversible Capacity Na-Ion Battery Anodes. ACS Applied Materials & Interfaces, 2019, 11, 16656-16661.	4.0	46
36	Cobalt in Nitrogen-Doped Graphene as Single-Atom Catalyst for High-Sulfur Content Lithium–Sulfur Batteries. Journal of the American Chemical Society, 2019, 141, 3977-3985.	6.6	1,071

#	Article	IF	CITATIONS
37	Supercapacitors: Vacuum Filtrationâ€andâ€Transfer Technique Helps Electrochemical Quartz Crystal Microbalance to Reveal Accurate Charge Storage in Supercapacitors (Small Methods 11/2019). Small Methods, 2019, 3, 1970037.	4.6	2
38	Carbonizedâ€MOF as a Sulfur Host for Aluminum–Sulfur Batteries with Enhanced Capacity and Cycling Life. Advanced Functional Materials, 2019, 29, 1807676.	7.8	103
39	The Charge Storage Mechanisms of 2D Cationâ€Intercalated Manganese Oxide in Different Electrolytes. Advanced Energy Materials, 2019, 9, 1802707.	10.2	89
40	Azide Passivation of Black Phosphorus Nanosheets: Covalent Functionalization Affords Ambient Stability Enhancement. Angewandte Chemie - International Edition, 2019, 58, 1479-1483.	7.2	123
41	Rapid Identification of the Layer Number of Large-Area Graphene on Copper. Chemistry of Materials, 2018, 30, 2067-2073.	3.2	23
42	Preface: Innovative electrode materials for supercapacitors. Science China Materials, 2018, 61, 131-132.	3.5	3
43	Degradation Chemistry and Stabilization of Exfoliated Few-Layer Black Phosphorus in Water. Journal of the American Chemical Society, 2018, 140, 7561-7567.	6.6	273
44	Mass production and industrial applications of graphene materials. National Science Review, 2018, 5, 90-101.	4.6	222
45	NS codoped carbon nanorods as anode materials for high-performance lithium and sodium ion batteries. Journal of Energy Chemistry, 2018, 27, 203-208.	7.1	36
46	Origin of the Overpotential for the Oxygen Evolution Reaction on a Well-Defined Graphene Electrode Probed by in Situ Sum Frequency Generation Vibrational Spectroscopy. Journal of the American Chemical Society, 2018, 140, 15568-15571.	6.6	64
47	Stabilizing black phosphorus nanosheets via edge-selective bonding of sacrificial C60 molecules. Nature Communications, 2018, 9, 4177.	5.8	171
48	Chemical Vapor Deposition Growth of Bernal-Stacked Bilayer Graphene by Edge-Selective Etching with H ₂ O. Chemistry of Materials, 2018, 30, 7852-7859.	3.2	17
49	Direct Laser Writing of Graphene Made from Chemical Vapor Deposition for Flexible, Integratable Microâ€Supercapacitors with Ultrahigh Power Output. Advanced Materials, 2018, 30, e1801384.	11.1	178
50	Highly pressure-sensitive graphene sponge fabricated by Î ³ -ray irradiation reduction. Science China Materials, 2018, 61, 1596-1604.	3.5	6
51	Well-elaborated, mechanochemically synthesized Fe-TPPâŠ,ZIF precursors (Fe-TPP = tetraphenylporphine) Tj ETQq batteries. Nano Energy, 2018, 52, 29-37.	1 1 0.784 8.2	314 rgBT /C 108
52	Advanced 3D Current Collectors for Lithiumâ€Based Batteries. Advanced Materials, 2018, 30, e1802014.	11.1	218
53	Hot-Roll-Pressing Mediated Transfer of Chemical Vapor Deposition Graphene for Transparent and Flexible Touch Screen with Low Sheet-Resistance. Journal of Nanoscience and Nanotechnology, 2018, 18, 4337-4342.	0.9	6
54	Robust Expandable Carbon Nanotube Scaffold for Ultrahighâ€Capacity Lithiumâ€Metal Anodes. Advanced Materials, 2018, 30, e1800884.	11.1	171

#	Article	IF	CITATIONS
55	Black Phosphorus Revisited: A Missing Metalâ€Free Elemental Photocatalyst for Visible Light Hydrogen Evolution. Advanced Materials, 2017, 29, 1605776.	11.1	405
56	Amorphous Molybdenum Sulfide/Carbon Nanotubes Hybrid Nanospheres Prepared by Ultrasonic Spray Pyrolysis for Electrocatalytic Hydrogen Evolution. Small, 2017, 13, 1700111.	5.2	70
57	From 1D Polymers to 2D Polymers: Preparation of Free-Standing Single-Monomer-Thick Two-Dimensional Conjugated Polymers in Water. ACS Nano, 2017, 11, 7223-7229.	7.3	28
58	Nitrogen-Doped Hollow Carbon Nanospheres for High-Performance Li-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 14180-14186.	4.0	97
59	Crystalline Copper Phosphide Nanosheets as an Efficient Janus Catalyst for Overall Water Splitting. ACS Applied Materials & Interfaces, 2017, 9, 2240-2248.	4.0	228
60	The correlation between carbon structures and electrochemical properties of sulfur/carbon composites for Li-S batteries. Journal of Power Sources, 2017, 341, 139-146.	4.0	25
61	Incorporating Pyrrolic and Pyridinic Nitrogen into a Porous Carbon made from C ₆₀ Molecules to Obtain Superior Energy Storage. Advanced Materials, 2017, 29, 1603414.	11.1	175
62	High Areal Capacity and Lithium Utilization in Anodes Made of Covalently Connected Graphite Microtubes. Advanced Materials, 2017, 29, 1700783.	11.1	148
63	KOH assisted activation of microwave exfoliated graphite oxide for selective voltammetric determination of dopamine and uric acid in the presence of ascorbic acid. Journal of Electroanalytical Chemistry, 2017, 804, 72-77.	1.9	10
64	Atom-Thick Interlayer Made of CVD-Grown Graphene Film on Separator for Advanced Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2017, 9, 43696-43703.	4.0	79
65	γ-Ray Irradiation-Derived MnO/rGO Composites for High Performance Lithium Ion Batteries. Chinese Journal of Chemical Physics, 2017, 30, 461-466.	0.6	2
66	A Hierarchical Carbon Derived from Spongeâ€Templated Activation of Graphene Oxide for Highâ€Performance Supercapacitor Electrodes. Advanced Materials, 2016, 28, 5222-5228.	11.1	383
67	Covalently Connected Carbon Nanostructures for Current Collectors in Both the Cathode and Anode of Li–S Batteries. Advanced Materials, 2016, 28, 9094-9102.	11.1	184
68	The Origin of Improved Electrical Double‣ayer Capacitance by Inclusion of Topological Defects and Dopants in Graphene for Supercapacitors. Angewandte Chemie - International Edition, 2016, 55, 13822-13827.	7.2	161
69	The Origin of Improved Electrical Doubleâ€Layer Capacitance by Inclusion of Topological Defects and Dopants in Graphene for Supercapacitors. Angewandte Chemie, 2016, 128, 14026-14031.	1.6	13
70	Supercapacitors: A Hierarchical Carbon Derived from Spongeâ€⊺emplated Activation of Graphene Oxide for Highâ€Performance Supercapacitor Electrodes (Adv. Mater. 26/2016). Advanced Materials, 2016, 28, 5331-5331.	11.1	7
71	Carbon Nanostructures: Covalently Connected Carbon Nanostructures for Current Collectors in Both the Cathode and Anode of Li–S Batteries (Adv. Mater. 41/2016). Advanced Materials, 2016, 28, 9016-9016.	11.1	5
72	A Highly Efficient Metalâ€Free Oxygen Reduction Electrocatalyst Assembled from Carbon Nanotubes and Graphene. Advanced Materials, 2016, 28, 4606-4613.	11.1	216

#	Article	IF	CITATIONS
73	Creating Pores on Graphene Platelets by Lowâ€Temperature KOH Activation for Enhanced Electrochemical Performance. Small, 2016, 12, 2376-2384.	5.2	95
74	Low-Cost Synthesis Route for High-Performance S/C Composite with 90% S Content. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2016, 32, 797-799.	2.2	4
75	Scattering of phonons by high-concentration isotopic impurities in ultrathin graphite. Physical Review B, 2015, 91, .	1.1	16
76	Free-standing boron and oxygen co-doped carbon nanofiber films for large volumetric capacitance and high rate capability supercapacitors. Nano Energy, 2015, 15, 235-243.	8.2	112
77	<i>In Situ</i> Activation of Nitrogen-Doped Graphene Anchored on Graphite Foam for a High-Capacity Anode. ACS Nano, 2015, 9, 8609-8616.	7.3	116
78	A robust hydrogen evolution catalyst based on crystalline nickel phosphide nanoflakes on three-dimensional graphene/nickel foam: high performance for electrocatalytic hydrogen production from pH 0–14. Journal of Materials Chemistry A, 2015, 3, 1941-1946.	5.2	138
79	Study on the Diffusion Mechanism of Graphene Grown on Copper Pockets. Small, 2015, 11, 1418-1422.	5.2	53
80	Manipulating Size of Li3V2(PO4)3 with Reduced Graphene Oxide: towards High-Performance Composite Cathode for Lithium Ion Batteries. Scientific Reports, 2015, 4, 5768.	1.6	23
81	Capacitance of carbon-based electrical double-layer capacitors. Nature Communications, 2014, 5, 3317.	5.8	600
82	Enhanced thermal conductivity of phase change materials with ultrathin-graphite foams for thermal energy storage. Energy and Environmental Science, 2014, 7, 1185-1192.	15.6	489
83	LiFePO ₄ /reduced graphene oxide hybrid cathode for lithium ion battery with outstanding rate performance. Journal of Materials Chemistry A, 2014, 2, 7812-7818.	5.2	58
84	Copper oxide as a "self-cleaning―substrate for graphene growth. Journal of Materials Research, 2014, 29, 403-409.	1.2	50
85	Controllable atmospheric pressure growth of mono-layer, bi-layer and tri-layer graphene. Chemical Communications, 2014, 50, 11012-11015.	2.2	28
86	Grapheneâ€Encapsulated Si on Ultrathinâ€Graphite Foam as Anode for High Capacity Lithiumâ€lon Batteries. Advanced Materials, 2013, 25, 4673-4677.	11.1	320
87	Graphene Synthesis <i>via</i> Magnetic Inductive Heating of Copper Substrates. ACS Nano, 2013, 7, 7495-7499.	7.3	77
88	Selective surface functionalization at regions of high local curvature in graphene. Chemical Communications, 2013, 49, 677-679.	2.2	135
89	Millimeterâ€6ize Singleâ€Crystal Graphene by Suppressing Evaporative Loss of Cu During Low Pressure Chemical Vapor Deposition. Advanced Materials, 2013, 25, 2062-2065.	11.1	279
90	Naturally Rolledâ€Up C/Si/C Trilayer Nanomembranes as Stable Anodes for Lithiumâ€Ion Batteries with Remarkable Cycling Performance. Angewandte Chemie - International Edition, 2013, 52, 2326-2330.	7.2	181

#	Article	IF	CITATIONS
91	Nanoporous Ni(OH) ₂ Thin Film on 3D Ultrathin-Graphite Foam for Asymmetric Supercapacitor. ACS Nano, 2013, 7, 6237-6243.	7.3	1,019
92	Non-destructive and rapid evaluation of chemical vapor deposition graphene by dark field optical microscopy. Applied Physics Letters, 2013, 103, .	1.5	29
93	Thermal conductivity measurements of suspended graphene with and without wrinkles by micro-Raman mapping. Nanotechnology, 2012, 23, 365701.	1.3	122
94	Highly Conductive and Porous Activated Reduced Graphene Oxide Films for High-Power Supercapacitors. Nano Letters, 2012, 12, 1806-1812.	4.5	852
95	Nitrogen doping of graphene and its effect on quantum capacitance, and a new insight on the enhanced capacitance of N-doped carbon. Energy and Environmental Science, 2012, 5, 9618.	15.6	376
96	Growth Mechanism and Controlled Synthesis of AB-Stacked Bilayer Graphene on Cu–Ni Alloy Foils. ACS Nano, 2012, 6, 7731-7738.	7.3	160
97	Thermal Transport in Three-Dimensional Foam Architectures of Few-Layer Graphene and Ultrathin Graphite. Nano Letters, 2012, 12, 2959-2964.	4.5	314
98	Tuning the Doping Type and Level of Graphene with Different Gold Configurations. Small, 2012, 8, 3129-3136.	5.2	70
99	Detection of sulfur dioxide gas with graphene field effect transistor. Applied Physics Letters, 2012, 100, .	1.5	64
100	Low-Temperature Chemical Vapor Deposition Growth of Graphene from Toluene on Electropolished Copper Foils. ACS Nano, 2012, 6, 2471-2476.	7.3	240
101	Ultrathin Graphite Foam: A Three-Dimensional Conductive Network for Battery Electrodes. Nano Letters, 2012, 12, 2446-2451.	4.5	382
102	Graphene Growth Using a Solid Carbon Feedstock and Hydrogen. ACS Nano, 2011, 5, 7656-7661.	7.3	87
103	Cuâ€Si Nanocable Arrays as Highâ€Rate Anode Materials for Lithiumâ€Ion Batteries. Advanced Materials, 2011, 23, 4415-4420.	11.1	283
104	Swiss roll nanomembranes with controlled proton diffusion as redox micro-supercapacitors. Chemical Communications, 2010, 46, 3881.	2.2	54
105	Selfâ€Wound Composite Nanomembranes as Electrode Materials for Lithium Ion Batteries. Advanced Materials, 2010, 22, 4591-4595.	11.1	96
106	Surface acoustic wave mediated dielectrophoretic alignment of rolled-up microtubes in microfluidic systems. Applied Physics Letters, 2010, 96, 134105.	1.5	21
107	Stretchable Graphene: A Close Look at Fundamental Parameters through Biaxial Straining. Nano Letters, 2010, 10, 3453-3458.	4.5	328
108	Metal Octaethylporphyrin Nanowire Array and Network toward Electric/Photoelectric Devices. Journal of Physical Chemistry C, 2009, 113, 16259-16265.	1.5	25

#	Article	IF	CITATIONS
109	Ionâ€Transferâ€Based Growth: A Mechanism for CuTCNQ Nanowire Formation. Advanced Materials, 2008, 20, 4879-4882.	11.1	36
110	ZnOEP based phototransistor: signal amplification and light-controlled switch. Chemical Communications, 2008, , 2653.	2.2	40
111	Controllable crystalline structure of fullerenenanorods and transport properties of an individual nanorod. Journal of Materials Chemistry, 2008, 18, 328-332.	6.7	82
112	Facile solution synthesis of hexagonal Alq3 nanorods and their field emission properties. Chemical Communications, 2007, , 3083.	2.2	49
113	Controllable Preparation of Submicrometer Single-Crystal C60Rods and Tubes Trough Concentration Depletion at the Surfaces of Seeds. Journal of Physical Chemistry C, 2007, 111, 10498-10502.	1.5	98
114	Bis(ethylenedithio)tetrathiafulvalene Charge-Transfer Salt Nanotube Arrays. Advanced Materials, 2006, 18, 2753-2757.	11.1	17