Takashi Ikegami

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8545944/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Organization of a Latent Space structure in VAE/GAN trained by navigation data. Neural Networks, 2022, 152, 234-243.	5.9	4
2	Bird Song Diamond in Deep Space 8k. Al and Society, 2020, 35, 87-101.	4.6	1
3	Visualization of dynamic structure in flocking behavior. Artificial Life and Robotics, 2020, 25, 544-551.	1.2	2
4	Artificial Life Next Generation Perspectives: Echoes from the 2018 Conference in Tokyo. Artificial Life, 2020, 26, 1-4.	1.3	3
5	Neural Autopoiesis: Organizing Self-Boundaries by Stimulus Avoidance in Biological and Artificial Neural Networks. Artificial Life, 2020, 26, 130-151.	1.3	7
6	Personogenesis Through Imitating Human Behavior in a Humanoid Robot "Alter3― Frontiers in Robotics and Al, 2020, 7, 532375.	3.2	5
7	Open-Ended Evolution and a Mechanism of Novelties in Web Services. Artificial Life, 2019, 25, 168-177.	1.3	3
8	How to Make Swarms Open-Ended? Evolving Collective Intelligence Through a Constricted Exploration of Adjacent Possibles. Artificial Life, 2019, 25, 178-197.	1.3	7
9	An Overview of Open-Ended Evolution: Editorial Introduction to the Open-Ended Evolution II Special Issue. Artificial Life, 2019, 25, 93-103.	1.3	18
10	How the Nature of Web Services Drives Vocabulary Creation in Social Tagging. , 2019, , .		3
11	Dynamic organization of flocking behaviors in a large-scale boids model. Journal of Computational Social Science, 2019, 2, 77-84.	2.4	7
12	Emergence of Superorganisms in a Large Scale Boids Model. , 2019, , .		1
13	Autonomous Regulation of Self and Non-Self by Stimulation Avoidance in Embodied Neural Networks. , 2018, , .		4
14	Life as an emergent phenomenon: studies from a large-scale boid simulation and web data. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160351.	3.4	18
15	A Sensorimotor Signature of the Transition to Conscious Social Perception: Co-regulation of Active and Passive Touch. Frontiers in Psychology, 2017, 8, 1778.	2.1	21
16	Learning by stimulation avoidance: A principle to control spiking neural networks dynamics. PLoS ONE, 2017, 12, e0170388.	2.5	20
17	Learning by stimulation avoidance scales to large neural networks. , 2017, , .		4
18	Open-Ended Evolution: Perspectives from the OEE Workshop in York. Artificial Life, 2016, 22, 408-423.	1.3	73

Τακάσηι Ικέςαμι

#	Article	IF	CITATIONS
19	Critical mass in the emergence of collective intelligence: a parallelized simulation of swarms in noisy environments. Artificial Life and Robotics, 2016, 21, 317-323.	1.2	2
20	Emergence of Swarming Behavior: Foraging Agents Evolve Collective Motion Based on Signaling. PLoS ONE, 2016, 11, e0152756.	2.5	25
21	Dynamic homeostasis in packet switching networks. Adaptive Behavior, 2015, 23, 50-63.	1.9	5
22	Possible dynamical explanations for Paltridge's principle of maximum entropy production. , 2014, , .		1
23	Motility at the Origin of Life: Its Characterization and a Model. Artificial Life, 2014, 20, 55-76.	1.3	33
24	Self-Organization on Social Media: Endo-Exo Bursts and Baseline Fluctuations. PLoS ONE, 2014, 9, e109293.	2.5	14
25	Creating space-time affordances via an autonomous sensor network. , 2013, , .		2
26	A Design for Living Technology: Experiments with the Mind Time Machine. Artificial Life, 2013, 19, 387-400.	1.3	13
27	The brain is not an isolated "black box,―nor is its goal to become one. Behavioral and Brain Sciences, 2013, 36, 213-214.	0.7	33
28	From synthetic modeling of social interaction to dynamic theories of brain–body–environment–body–brain systems. Behavioral and Brain Sciences, 2013, 36, 420-421.	0.7	21
29	Exploring Default Mode and Information Flow on the Web. PLoS ONE, 2013, 8, e60398.	2.5	15
30	Using Human–Computer Interfaces to Investigate â€~Mind-As-It-Could-Be' from the First-Person Perspective. Cognitive Computation, 2012, 4, 365-382.	5.2	27
31	Imitation by social interaction? Analysis of a minimal agent-based model of the correspondence problem. Frontiers in Human Neuroscience, 2012, 6, 202.	2.0	17
32	Adaptability and Homeostasis in the Game of Life interacting with the evolved Cellular Automata. , 2012, , 232-254.		0
33	Emergence of Protosentences in Artificial Communicating Systems. IEEE Transactions on Autonomous Mental Development, 2011, 3, 146-153.	1.6	31
34	Chemical Robot: Self-organizing Self-moving Oil Droplet. Journal of the Robotics Society of Japan, 2010, 28, 435-444.	0.1	2
35	Adaptability and Homeostasis in the Game of Life interacting with the evolved Cellular Automata. International Journal of Natural Computing Research, 2010, 1, 40-50.	0.5	0

36 Studying a self-sustainable system by making a mind time machine. , 2010, , .

4

Τακάσηι Ικεσαμι

#	Article	IF	CITATIONS
37	Chemical Basis for Minimal Cognition. Artificial Life, 2010, 16, 233-243.	1.3	45
38	The search for a first cell under the maximalism design principle. Technoetic Arts, 2009, 7, 153-164.	0.1	6
39	Shapes and Self-Movement in Protocell Systems. Artificial Life, 2009, 15, 59-70.	1.3	23
40	From a homeostatic to a homeodynamic self. BioSystems, 2008, 91, 388-400.	2.0	41
41	Turn-taking Interaction as a Cooperative and Co-creative Process. , 2007, 30, 278-288.		29
42	Spatial-Pattern-Induced Evolution of a Self-Replicating Loop Network. Artificial Life, 2006, 12, 461-485.	1.3	12
43	A new formalization of a meta-game using the lambda calculus. BioSystems, 2005, 80, 219-231.	2.0	Ο
44	dynamical categories and language. Behavioral and Brain Sciences, 2005, 28, 500-501.	0.7	0
45	Adaptability and Diversity in Simulated Turn-taking Behavior. Artificial Life, 2004, 10, 361-378.	1.3	41
46	Chaotic itinerancy in coupled dynamical recognizers. Chaos, 2003, 13, 1133-1147.	2.5	14
47	Interaction Based Evolution of Self-Replicating Loop Structures. Lecture Notes in Computer Science, 2003, , 89-96.	1.3	2
48	Chaotic itinerancy needs embodied cognition to explain memory dynamics. Behavioral and Brain Sciences, 2001, 24, 818-819.	0.7	3
49	Self-maintenance and Self-reproduction in an Abstract Cell Model. Journal of Theoretical Biology, 2000, 206, 243-253.	1.7	43
50	Open Problems in Artificial Life. Artificial Life, 2000, 6, 363-376.	1.3	235
51	Dynamics of internal models in game players. Physica D: Nonlinear Phenomena, 1999, 134, 253-266.	2.8	57
52	Evolvability of machines and tapes. Artificial Life and Robotics, 1999, 3, 242-245.	1.2	7
53	Evolution of Strategies in the three-person Iterated Prisoner's Dilemma Game. Journal of Theoretical Biology, 1998, 195, 53-67.	1.7	21
54	Active Mutation in Self-Reproducing Networks of Machines and Tapes. Artificial Life, 1995, 2, 305-318.	1.3	17

Τακάσηι Ικέςαμι

#	Article	IF	CITATIONS
55	From genetic evolution to emergence of game strategies. Physica D: Nonlinear Phenomena, 1994, 75, 310-327.	2.8	25
56	Evolution of host–parasitoid network through homeochaotic dynamics. Chaos, 1992, 2, 397-407.	2.5	41
57	Homeochaos: dynamics stability of a symbiotic network with population dynamics and evolving mutation rates. Physica D: Nonlinear Phenomena, 1992, 56, 406-429.	2.8	70
58	Simulated turn-taking and development of styles of motion. , 0, , 301-322.		1
59	Emergence of Sense-Making Behavior by the Stimulus Avoidance Principle: Experiments on a Robot Behavior Controlled by Cultured Neuronal Cells. , 0, , .		9