List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8545748/publications.pdf Version: 2024-02-01

LINC FENC

#	Article	IF	CITATIONS
1	Hybrid materials based on lanthanide organic complexes: a review. Chemical Society Reviews, 2013, 42, 387-410.	38.1	674
2	Ultrafast Synthesis of Ultrasmall Poly(Vinylpyrrolidone)â€Protected Bismuth Nanodots as a Multifunctional Theranostic Agent for In Vivo Dualâ€Modal CT/Photothermalâ€Imagingâ€Guided Photothermal Therapy. Advanced Functional Materials, 2017, 27, 1702018.	14.9	203
3	Facile and rapid fabrication of nanostructured lanthanide coordination polymers as selective luminescent probes in aqueous solution. Journal of Materials Chemistry, 2012, 22, 6819.	6.7	161
4	A Metal–Organic Framework/DNA Hybrid System as a Novel Fluorescent Biosensor for Mercury(II) Ion Detection. Chemistry - A European Journal, 2016, 22, 477-480.	3.3	155
5	Synthesis and Luminescence Properties of Bi ³⁺ -Activated K ₂ MgGeO ₄ : A Promising High-Brightness Orange-Emitting Phosphor for WLEDs Conversion. Inorganic Chemistry, 2018, 57, 12303-12311.	4.0	142
6	Ultrafast Synthesis of Novel Hexagonal Phase NaBiF ₄ Upconversion Nanoparticles at Room Temperature. Advanced Materials, 2017, 29, 1700505.	21.0	131
7	Encapsulation of Ln ^{III} Ions/Dyes within a Microporous Anionic MOF by Postâ€synthetic Ionic Exchange Serving as a Ln ^{III} Ion Probe and Twoâ€Color Luminescent Sensors. Chemistry - A European Journal, 2015, 21, 9748-9752.	3.3	123
8	α-NaYb(Mn)F ₄ :Er ³⁺ /Tm ³⁺ @NaYF ₄ UCNPs as "Band-Shape―Luminescent Nanothermometers over a Wide Temperature Range. ACS Applied Materials & Interfaces, 2015, 7, 20813-20819.	8.0	114
9	A "Solid Dualâ€Ionsâ€Transformation†Route to S,N Coâ€Doped Carbon Nanotubes as Highly Efficient "Metalâ€Free†Catalysts for Organic Reactions. Advanced Materials, 2016, 28, 10679-10683.	21.0	107
10	Novel Multifunctional Nanocomposites: Magnetic Mesoporous Silica Nanospheres Covalently Bonded with Near-Infrared Luminescent Lanthanide Complexes. Langmuir, 2010, 26, 3596-3600.	3.5	78
11	Yb ³⁺ /Er ³⁺ -Codoped Bi ₂ O ₃ Nanospheres: Probe for Upconversion Luminescence Imaging and Binary Contrast Agent for Computed Tomography Imaging. ACS Applied Materials & Interfaces, 2015, 7, 26346-26354.	8.0	78
12	Nd ³⁺ -sensitized NaLuF ₄ luminescent nanoparticles for multimodal imaging and temperature sensing under 808 nm excitation. Nanoscale, 2015, 7, 17861-17870.	5.6	74
13	CeO ₂ nanowires self-inserted into porous Co ₃ O ₄ frameworks as high-performance "noble metal free―hetero-catalysts. Chemical Science, 2016, 7, 1109-1114.	7.4	74
14	Achieving the Tradeâ€Off between Selectivity and Activity in Semihydrogenation of Alkynes by Fabrication of (Asymmetrical Pd@Ag Core)@(CeO ₂ Shell) Nanocatalysts via Autoredox Reaction. Advanced Materials, 2017, 29, 1605332.	21.0	73
15	Optimization of Bi ³⁺ in Upconversion Nanoparticles Induced Simultaneous Enhancement of Near-Infrared Optical and X-ray Computed Tomography Imaging Capability. ACS Applied Materials & amp; Interfaces, 2016, 8, 27490-27497.	8.0	72
16	Multifunctional Cu–Ag ₂ S nanoparticles with high photothermal conversion efficiency for photoacoustic imaging-guided photothermal therapy <i>in vivo</i> . Nanoscale, 2018, 10, 825-831.	5.6	68
17	Lanthanide doped Bi ₂ O ₃ upconversion luminescence nanospheres for temperature sensing and optical imaging. Dalton Transactions, 2016, 45, 2686-2693.	3.3	67
18	Benefits of surfactant effects on quantum efficiency enhancement and temperature sensing behavior of NaBiF ₄ upconversion nanoparticles. Journal of Materials Chemistry C, 2017, 5, 9659-9665.	5.5	60

#	Article	IF	CITATIONS
19	Enhanced upconversion luminescence and controllable phase/shape of NaYF ₄ :Yb/Er crystals through Cu ²⁺ ion doping. CrystEngComm, 2018, 20, 1945-1953.	2.6	59
20	Nanocomposites based on lanthanide-doped upconversion nanoparticles: diverse designs and applications. Light: Science and Applications, 2022, 11, .	16.6	58
21	Near-infrared luminescent xerogel materials covalently bonded with ternary lanthanide [Er(iii), Nd(iii), Yb(iii), Sm(iii)] complexes. Dalton Transactions, 2009, , 2406.	3.3	57
22	Growth of lanthanide-doped LiGdF4 nanoparticles induced by LiLuF4 core as tri-modal imaging bioprobes. Biomaterials, 2015, 65, 115-123.	11.4	55
23	Rare earth fluorides upconversion nanophosphors: from synthesis to applications in bioimaging. CrystEngComm, 2013, 15, 7142.	2.6	54
24	A study on the near-infrared luminescent properties of xerogel materials doped with dysprosium complexes. Dalton Transactions, 2009, , 6593.	3.3	53
25	Recent Advances in Graphitic Carbon Nitride Supported Singleâ€Atom Catalysts for Energy Conversion. ChemCatChem, 2021, 13, 1250-1270.	3.7	46
26	PEGylated GdF ₃ :Fe Nanoparticles as Multimodal <i>T</i> ₁ / <i>T</i> ₂ -Weighted MRI and X-ray CT Imaging Contrast Agents. ACS Applied Materials & Interfaces, 2017, 9, 20426-20434.	8.0	45
27	Near-infrared optical and X-ray computed tomography dual-modal imaging probe based on novel lanthanide-doped K _{0.3} Bi _{0.7} F _{2.4} upconversion nanoparticles. Nanoscale, 2018, 10, 1394-1402.	5.6	45
28	Ultrafast synthesis of ultrasmall polyethylenimine-protected AgBiS ₂ nanodots by "rookie method―for <i>in vivo</i> dual-modal CT/PA imaging and simultaneous photothermal therapy. Nanoscale, 2018, 10, 16765-16774.	5.6	44
29	Commendable Pr ³⁺ -activated Ba ₂ Ga ₂ GeO ₇ phosphor with high-brightness white long-persistent luminescence. Journal of Materials Chemistry C, 2019, 7, 6698-6705.	5.5	44
30	A strategy for developing thermal-quenching-resistant emission and super-long persistent luminescence in BaGa ₂ O ₄ :Bi ³⁺ . Journal of Materials Chemistry C, 2019, 7, 13088-13096.	5.5	42
31	In Situ Embedding Synthesis of Highly Stable CsPbBr ₃ /CsPb ₂ Br ₅ @PbBr(OH) Nano/Microspheres through Water Assisted Strategy. Advanced Functional Materials, 2021, 31, 2103275.	14.9	42
32	Proteinaceous Fibers with Outstanding Mechanical Properties Manipulated by Supramolecular Interactions. CCS Chemistry, 2021, 3, 1669-1677.	7.8	39
33	Pure and intense orange upconversion luminescence of Eu3+ from the sensitization of Yb3+–Mn2+ dimer in NaY(Lu)F4 nanocrystals. Journal of Materials Chemistry C, 2014, 2, 9004-9011.	5.5	38
34	Renal Clearable Bi–Bi ₂ S ₃ Heterostructure Nanoparticles for Targeting Cancer Theranostics. ACS Applied Materials & Interfaces, 2019, 11, 7774-7781.	8.0	38
35	An ideal detector composed of a 3D Gd-based coordination polymer for DNA and Hg ²⁺ ion. Inorganic Chemistry Frontiers, 2016, 3, 376-380.	6.0	37
36	A highly active (102) surface-induced rapid degradation of a CuS nanotheranostic platform for <i>in situ T</i> ₁ -weighted magnetic resonance imaging-guided synergistic therapy. Nanoscale, 2019, 11, 12853-12857.	5.6	33

#	Article	IF	CITATIONS
37	Emerging biomaterials: Taking full advantage of the intrinsic properties of rare earth elements. Nano Today, 2020, 35, 100952.	11.9	32
38	Double perovskite Cs ₂ NaInCl ₆ nanocrystals with intense dual-emission <i>via</i> self-trapped exciton-to-Tb ³⁺ dopant energy transfer. Journal of Materials Chemistry C, 2022, 10, 10609-10615.	5.5	32
39	Design of a mixed-anionic-ligand system for a blue-light-excited orange-yellow emission phosphor Ba _{1.31} Sr _{3.69} (BO ₃) ₃ Cl:Eu ²⁺ . Journal of Materials Chemistry C, 2020, 8, 3040-3050.	5.5	31
40	Embellishment of Upconversion Nanoparticles with Ultrasmall Perovskite Quantum Dots for Fullâ€Color Tunable, Dualâ€Modal Luminescence Anticounterfeiting. Advanced Optical Materials, 2021, 9, 2100814.	7.3	31
41	Hydrothermal synthesis and crystal structure of a new two-dimensional zinc citrate complex. Journal of Coordination Chemistry, 2005, 58, 1581-1588.	2.2	30
42	Zn or O? An Atomic Level Comparison on Antibacterial Activities of Zinc Oxides. Chemistry - A European Journal, 2016, 22, 8053-8058.	3.3	30
43	Visible and near-infrared luminescent mesoporous titania microspheres functionalized with lanthanide complexes: microstructure and luminescence with visible excitation. RSC Advances, 2014, 4, 28481.	3.6	26
44	Selective enhancement of green upconversion luminescence from NaYF4:Yb, Er microparticles through Ga3+ doping for sensitive temperature sensing. Journal of Luminescence, 2019, 215, 116632.	3.1	26
45	In situ decorating of ultrasmall Ag2Se on upconversion nanoparticles as novel nanotheranostic agent for multimodal imaging-guided cancer photothermal therapy. Applied Materials Today, 2020, 18, 100497.	4.3	26
46	Simple construction of Cu _{2â^'x} S:Pt nanoparticles as nanotheranostic agent for imaging-guided chemo-photothermal synergistic therapy of cancer. Nanoscale, 2018, 10, 10945-10951.	5.6	23
47	Investigation of 4 <i>f</i> â€Related Electronic Transitions of Rareâ€Earth Doped ZnO Luminescent Materials: Insights from Firstâ€Principles Calculations. ChemPhysChem, 2020, 21, 51-58.	2.1	23
48	Phase-tunable synthesis and upconversion photoluminescence of rare-earth-doped sodium scandium fluoride nanocrystals. CrystEngComm, 2013, 15, 6901.	2.6	22
49	Visibleâ€nearâ€infrared luminescent lanthanide ternary complexes based on betaâ€diketonate using visibleâ€light excitation. Luminescence, 2015, 30, 1071-1076.	2.9	22
50	Core–shell BaYbF ₅ :Tm@BaGdF ₅ :Yb,Tm nanocrystals for in vivo trimodal UCL/CT/MR imaging. RSC Advances, 2016, 6, 14283-14289.	3.6	21
51	A Simple Strategy for the Controlled Synthesis of Ultrasmall Hexagonalâ€Phase NaYF ₄ :Yb,Er Upconversion Nanocrystals. ChemPhotoChem, 2017, 1, 369-375.	3.0	18
52	Investigation on the photoluminescence and thermoluminescence of BaGa ₂ O ₄ :Bi ³⁺ at extremely low temperatures. Journal of Materials Chemistry C, 2021, 9, 1786-1793.	5.5	18
53	High-Brightness, Broad-Spectrum White Organic Electroluminescent Device Obtained by Designing Light-Emitting Layers as also Carrier Transport Layers. Journal of Physical Chemistry C, 2010, 114, 21723-21727.	3.1	17
54	A long-wave optical pH sensor based on red upconversion luminescence of NaGdF ₄ nanotubes. RSC Advances, 2014, 4, 55897-55899.	3.6	16

#	Article	IF	CITATIONS
55	Fabrication and characterization of magnetic mesoporous silica nanospheres covalently bonded with europium complex. Dalton Transactions, 2010, 39, 5166.	3.3	15
56	Core–shell–shell heterostructures of α-NaLuF ₄ :Yb/Er@NaLuF ₄ :Yb@MF ₂ (M = Ca, Sr, Ba) with remarkably enhanced upconversion luminescence. Dalton Transactions, 2016, 45, 11129-11136.	3.3	15
57	Unveiling the mechanism of rare earth doping to optimize the optical performance of the CsPbBr ₃ perovskite. Inorganic Chemistry Frontiers, 2020, 7, 4669-4676.	6.0	15
58	Study of a color-tunable long afterglow phosphor Gd _{1.5} Y _{1.5} Ga ₃ Al ₂ O ₁₂ :Tb ³⁺ : luminescence properties and mechanism. RSC Advances, 2020, 10, 28049-28058.	3.6	15
59	One-step conversion of CsPbBr ₃ into Cs ₄ PbBr ₆ /CsPbBr ₃ @Ta ₂ O ₅ core–shell microcrystals with enhanced stability and photoluminescence. Journal of Materials Chemistry C, 2021, 9. 1228-1234.	5.5	14
60	Microwave-assisted synthesis of nanoscale Eu(BTC)(H2O)·DMF with tunable luminescence. Science China Chemistry, 2015, 58, 973-978.	8.2	13
61	Decoration of upconversion nanocrystals with metal sulfide quantum dots by a universal <i>in situ</i> controlled growth strategy. Nanoscale, 2020, 12, 3977-3987.	5.6	13
62	Erbium omplexâ€Doped Nearâ€Infrared Luminescent and Magnetic Macroporous Materials. European Journal of Inorganic Chemistry, 2008, 2008, 5513-5518.	2.0	12
63	Near-Infrared-Light-Responsive Copper Oxide Nanoparticles as Efficient Theranostic Nanoagents for Photothermal Tumor Ablation. ACS Applied Bio Materials, 2021, 4, 5266-5275.	4.6	12
64	Simultaneous Enhancement of Photoluminescence and Stability of CsPbCl ₃ Perovskite Enabled by Titanium Ion Dopant. Journal of Physical Chemistry Letters, 2021, 12, 10746-10752.	4.6	12
65	Microwave-assisted synthesis and down- and up-conversion luminescent properties of BaYF5:Ln (Ln =) Tj ETQq1	1 0,784314 2.6	4 rgBT /Over
66	Self-supported Co3O4wire-penetrated-cage hybrid arrays with enhanced supercapacitance properties. CrystEngComm, 2017, 19, 1459-1463.	2.6	11
67	A pH-responsive assembly based on upconversion nanocrystals and ultrasmall nickel nanoparticles. Journal of Materials Chemistry C, 2017, 5, 9666-9672.	5.5	10
68	A new blue long-lasting phosphorescence phosphor Mg2SnO4:Bi3+: synthesis and luminescence properties. Journal of Materials Science: Materials in Electronics, 2018, 29, 4163-4170.	2.2	10
69	Lanthanide-doped bismuth-based fluoride nanoparticles: controlled synthesis and ratiometric temperature sensing. CrystEngComm, 2020, 22, 3432-3438.	2.6	10
70	Developing near-infrared long-lasting phosphorescence of Yb ³⁺ through a medium: insights into energy transfer in the novel material Zn _{1.98} Li _{0.02} P ₂ O ₇ :Yb ³⁺ . Dalton Transactions, 2018, 47, 9814-9823.	3.3	9
71	Unveiling the Relationship between Energy Transfer and the Triplet Energy Level by Tuning Diarylethene within Europium(III) Complexes. Inorganic Chemistry, 2020, 59, 661-668.	4.0	9
72	In Situ Construction of Pt–Ni NF@Niâ€MOFâ€74 for Selective Hydrogenation of <i>p</i> â€Nitrostyrene by Ammonia Borane. Chemistry - A European Journal, 2020, 26, 12539-12543.	3.3	9

#	Article	IF	CITATIONS
73	Engineering Cu _{2â^'<i>x</i>} S-conjugated upconverting nanocomposites for NIR-II light-induced enhanced chemodynamic/photothermal therapy of cancer. Journal of Materials Chemistry B, 2021, 9, 7216-7228.	5.8	9
74	The size-responsive phase transition mechanism and upconversion/downshifting luminescence properties of KLu ₂ F ₇ :Yb ³⁺ /Er ³⁺ nanocrystals. Journal of Materials Chemistry C, 2017, 5, 6311-6318.	5.5	8
75	Origin of Color Centers in the Perovskite Oxide CeAlO ₃ . ChemPlusChem, 2018, 83, 976-983.	2.8	8
76	Thermal Decomposition of CdS Nanowires Assisted by ZIF-67 to Induce the Formation of Co ₉ S ₈ -Based Carbon Nanomaterials with High Lithium-Storage Abilities. ACS Applied Energy Materials, 2018, 1, 6242-6249.	5.1	8
77	Insight into the Characteristics of 4f-Related Electronic Transitions for Rare-Earth-Doped KLuS ₂ Luminescent Materials through First-Principles Calculation. Journal of Physical Chemistry C, 2020, 124, 932-938.	3.1	8
78	Remarkably Enhanced Red Upconversion Emission in β-NaLuF ₄ :Er,Tm Microcrystals via Ion Exchange. Inorganic Chemistry, 2022, 61, 10713-10721.	4.0	8
79	Engineering Gadoliniumâ€Integrated Tellurium Nanorods for Theoryâ€Oriented Photonic Hyperthermia in the NIRâ€II Biowindow. Small, 2020, 16, 2003508.	10.0	7
80	Ultra-small bimetallic phosphides for dual-modal MRI imaging guided photothermal ablation of tumors. Dalton Transactions, 2022, 51, 4423-4428.	3.3	7
81	Strongly Coupled Pt–Ni ₂ GeO ₄ Hybrid Nanostructures as Potential Nanocatalysts for CO Oxidation. Chemistry - A European Journal, 2015, 21, 14768-14771.	3.3	5
82	Dual-functional α-NaYb(Mn)F4:Er3+@NaLuF4 nanocrystals with highly enhanced red upconversion luminescence. RSC Advances, 2016, 6, 33493-33500.	3.6	5
83	Selenium Vacancy Engineering Using Bi ₂ Se ₃ Nanodots for Boosting Highly Efficient Photonic Hyperthermia. ACS Applied Materials & Interfaces, 2021, 13, 48378-48385.	8.0	5
84	Tunable ultra-uniform Cs ₄ PbBr ₆ perovskites with efficient photoluminescence and excellent stability for high-performance white light-emitting diodes. Journal of Materials Chemistry C, 2021, 9, 12811-12818.	5.5	4
85	Ligand-Induced Nucleation Growth Kinetics of CdTe QDs: Implications for White-Light-Emitting Diodes. ACS Applied Nano Materials, 2022, 5, 401-410.	5.0	3
86	STRUCTURAL PHASE TRANSITION IN THE LAYERED PEROVSKITE COMPOUND BaTb2Mn2O7., 2002,,.		0
87	X-RAY ABSORPTION STUDY OF ELECTRONIC, SPATIAL STRUCTURE AND PROPERTIES OF BaLn2Mn2O7 MANGANATES. , 2002, , .		Ο