Carlo Forestiere

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8545346/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	H ³ (Hydrogelâ€Based, Highâ€Sensitivity, Hybrid) Plasmonic Transducers for Biomolecular Interactions Monitoring. Advanced Materials Technologies, 2022, 7, .	5.8	8
2	Recent Advances in the Fabrication and Functionalization of Flexible Optical Biosensors: Toward Smart Life-Sciences Applications. Biosensors, 2021, 11, 107.	4.7	31
3	Electromagnetic Scattering by Networks of High-Permittivity Thin Wires. Physical Review Applied, 2021, 16, .	3.8	Ο
4	Time-domain formulation of electromagnetic scattering based on a polarization-mode expansion and the principle of least action. Physical Review A, 2021, 104, .	2.5	5
5	Bandwidth of Singular Plasmonic Resonators in Relation to the Chu Limit. ACS Photonics, 2021, 8, 3249-3260.	6.6	3
6	Design of Gelatin-Capped Plasmonic-Diatomite Nanoparticles with Enhanced Galunisertib Loading Capacity for Drug Delivery Applications. International Journal of Molecular Sciences, 2021, 22, 10755.	4.1	16
7	Plasmonic Hydrogel Nanocomposites with Combined Optical and Mechanical Properties for Biochemical Sensing. , 2021, 5, .		Ο
8	Quantum theory of radiative decay rate and frequency shift of surface plasmon modes. Physical Review A, 2020, 102, .	2.5	6
9	Magnetoquasistatic resonances of small dielectric objects. Physical Review Research, 2020, 2, .	3.6	9
10	Full-wave electromagnetic modes and hybridization in nanoparticle dimers. Scientific Reports, 2019, 9, 14524.	3.3	23
11	Electromagnetic Scattering Resonances of Quasi-1-D Nanoribbons. IEEE Transactions on Antennas and Propagation, 2019, 67, 5497-5506.	5.1	2
12	Electromagnetic modes and resonances of two-dimensional bodies. Physical Review B, 2019, 99, .	3.2	10
13	Directional scattering cancellation for an electrically large dielectric sphere. Optics Letters, 2019, 44, 1972.	3.3	2
14	Volume Integral Formulation for the Calculation of Material Independent Modes of Dielectric Scatterers. IEEE Transactions on Antennas and Propagation, 2018, 66, 2505-2514.	5.1	14
15	A Full-Retarded Spectral Technique for the Analysis of Fano Resonances in a Dielectric Nanosphere. Springer Series in Optical Sciences, 2018, , 185-218.	0.7	2
16	A Frequency Stable Volume Integral Equation Method for Anisotropic Scatterers. IEEE Transactions on Antennas and Propagation, 2017, 65, 1224-1235.	5.1	11
17	On the nanoparticle resonances in the full-retarded regime. Journal of Optics (United Kingdom), 2017, 19, 075601.	2.2	6
18	On small signal equivalent circuit models for quantum dots. International Journal of Circuit Theory and Applications, 2017, 45, 935-950.	2.0	4

CARLO FORESTIERE

#	Article	IF	CITATIONS
19	Spectral theory of electromagnetic scattering by a coated sphere. Journal of the Optical Society of America B: Optical Physics, 2017, 34, 1524.	2.1	8
20	Inverse Design of Metal Nanoparticles' Morphology. ACS Photonics, 2016, 3, 68-78.	6.6	33
21	Material-independent modes for electromagnetic scattering. Physical Review B, 2016, 94, .	3.2	21
22	Simple Theoretical Considerations for Block opolymerâ€Based Plasmonic Metamaterials. Macromolecular Symposia, 2016, 359, 72-78.	0.7	3
23	Radiative properties of diffractively-coupled optical nano-antennas with helical geometry. Optics Express, 2015, 23, 25496.	3.4	5
24	Full-Wave Analytical Solution of Second-Harmonic Generation in Metal Nanospheres. Plasmonics, 2014, 9, 151-166.	3.4	24
25	Enhancement of Molecular Fluorescence in the UV Spectral Range Using Aluminum Nanoantennas. Plasmonics, 2014, 9, 715-725.	3.4	21
26	Photonic–Plasmonic Coupling of GaAs Single Nanowires to Optical Nanoantennas. Nano Letters, 2014, 14, 2271-2278.	9.1	73
27	Size-dependent second-harmonic generation from gold nanoparticles. Physical Review B, 2014, 89, .	3.2	38
28	Cloaking of arbitrarily shaped objects with homogeneous coatings. Physical Review B, 2014, 89, .	3.2	4
29	Block-copolymer-based plasmonic metamaterials. , 2013, , .		2
30	Theory of coupled plasmon modes and Fano-like resonances in subwavelength metal structures. Physical Review B, 2013, 88, .	3.2	53
31	Enhanced second harmonic generation from InAs nano-wing structures on silicon. Nanoscale, 2013, 5, 10163.	5.6	15
32	Surface integral method for second harmonic generation in metal nanoparticles including both local-surface and nonlocal-bulk sources. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 2355.	2.1	34
33	Scattering properties of carbon nanotubes. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2013, 32, 1793-1808.	0.9	2
34	Aperiodic Order in Nanoplasmonics. Challenges and Advances in Computational Chemistry and Physics, 2013, , 329-377.	0.6	0
35	Multipolar second harmonic generation from planar arrays of Au nanoparticles. Optics Express, 2012, 20, 15797.	3.4	43
36	Plasmonic-photonic arrays with aperiodic spiral order for ultra-thin film solar cells. Optics Express, 2012, 20, A418.	3.4	34

CARLO FORESTIERE

#	Article	IF	CITATIONS
37	Transmission-Line Model for Multiwall Carbon Nanotubes With Intershell Tunneling. IEEE Nanotechnology Magazine, 2012, 11, 554-564.	2.0	25
38	Broadband and wide-angle scattering in aperiodic spiral arrays for ultra-thin film solar cells enhancement. , 2012, , .		0
39	Plasmon-enhanced Isotropic Structural Coloration of Metal Films with Homogenized Pinwheel Nanoparticle Arrays. , 2012, , .		0
40	Surface integral formulations for the design of plasmonic nanostructures. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2012, 29, 2314.	1.5	32
41	GPU-accelerated T-matrix algorithm for light-scattering simulations. Journal of Computational Physics, 2012, 231, 5640-5652.	3.8	7
42	Vertical "III–V―V-Shaped Nanomembranes Epitaxially Grown on a Patterned Si[001] Substrate and Their Enhanced Light Scattering. ACS Nano, 2012, 6, 10982-10991.	14.6	41
43	Genetically Engineered Plasmonic Nanoarrays. Nano Letters, 2012, 12, 2037-2044.	9.1	102
44	Electrical Propagation Models for Single- and Multi-Wall Carbon Nanotubes. Journal of Nanoelectronics and Optoelectronics, 2012, 7, 12-16.	0.5	1
45	Genetically Engineered Plasmonic Nano-Arrays. , 2012, , .		0
46	On the Evaluation of the Number of Conducting Channels in Multiwall Carbon Nanotubes. IEEE Nanotechnology Magazine, 2011, 10, 1221-1223.	2.0	25
47	Plasmon-enhanced depolarization of reflected light from arrays of nanoparticle dimers. Optics Express, 2011, 19, 21081.	3.4	16
48	Plasmon-enhanced structural coloration of metal films with isotropic Pinwheel nanoparticle arrays. Optics Express, 2011, 19, 23818.	3.4	22
49	Signal Propagation in Carbon Nanotubes of Arbitrary Chirality. IEEE Nanotechnology Magazine, 2011, 10, 135-149.	2.0	53
50	Near-field calculation based on the T-matrix method with discrete sources. Journal of Quantitative Spectroscopy and Radiative Transfer, 2011, 112, 2384-2394.	2.3	16
51	Scattering properties of carbon nanotube arrays. International Journal of Microwave and Wireless Technologies, 2010, 2, 445-452.	1.9	1
52	Particle-swarm optimization of broadband nanoplasmonic arrays. Optics Letters, 2010, 35, 133.	3.3	81
53	Hydrodynamic model for the signal propagation along carbon nanotubes. Journal of Nanophotonics, 2010, 4, 041695.	1.0	20
54	Role of aperiodic order in the spectral, localization, and scaling properties of plasmon modes for the design of nanoparticle arrays. Physical Review B, 2009, 79, .	3.2	35

CARLO FORESTIERE

#	ARTICLE	IF	CITATIONS
55	Dipolar mode localization and spectral gaps in quasi-periodic arrays of ferromagnetic nanoparticles. Physical Review B, 2009, 79, .	3.2	7
56	Finite element computations of resonant modes for small magnetic particles. Journal of Applied Physics, 2009, 105, .	2.5	4
57	A novel formulation for the numerical computation of magnetization modes in complex micromagnetic systems. Journal of Computational Physics, 2009, 228, 6130-6149.	3.8	39
58	The role of nanoparticle shapes and deterministic aperiodicity for the design of nanoplasmonic arrays. Optics Express, 2009, 17, 9648.	3.4	54
59	Nanoplasmonics of prime number arrays. Optics Express, 2009, 17, 24288.	3.4	19