
Mikio Furuse

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8544637/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	JAM-A interacts with α3β1 integrin and tetraspanins CD151 and CD9 to regulate collective cell migration of polarized epithelial cells. Cellular and Molecular Life Sciences, 2022, 79, 88.	5.4	13
2	Erebosis, a new cell death mechanism during homeostatic turnover of gut enterocytes. PLoS Biology, 2022, 20, e3001586.	5.6	12
3	Tricellular Tight Junctions. , 2022, , 11-26.		1
4	Loss of Claudin-3 Impairs Hepatic Metabolism, Biliary Barrier Function, and Cell Proliferation in the Murine Liver. Cellular and Molecular Gastroenterology and Hepatology, 2021, 12, 745-767.	4.5	5
5	Recent advances in understanding tight junctions. Faculty Reviews, 2021, 10, 18.	3.9	7
6	The novel membrane protein Hoka regulates septate junction organization and stem cell homeostasis in the <i>Drosophila</i> gut. Journal of Cell Science, 2021, 134, .	2.0	8
7	Occludin and tricellulin facilitate formation of anastomosing tight-junction strand network to improve barrier function. Molecular Biology of the Cell, 2021, 32, 722-738.	2.1	58
8	Angulin-1 seals tricellular contacts independently of tricellulin and claudins. Journal of Cell Biology, 2021, 220, .	5.2	27
9	Selective expression of claudin-5 in thymic endothelial cells regulates the blood–thymus barrier and T-cell export. International Immunology, 2021, 33, 171-182.	4.0	13
10	Claudin-9 constitutes tight junctions of folliculo-stellate cells in the anterior pituitary gland. Scientific Reports, 2021, 11, 21642.	3.3	9
11	The septate junction protein Mesh is required for epithelial morphogenesis, ion transport, and paracellular permeability in the Drosophila Malpighian tubule. American Journal of Physiology - Cell Physiology, 2020, 318, C675-C694.	4.6	16
12	Tight Junction Structure and Function Revisited. Trends in Cell Biology, 2020, 30, 805-817.	7.9	308
13	Angulin-2/ILDR1, a tricellular tight junction protein, does not affect water transport in the mouse large intestine. Scientific Reports, 2020, 10, 10374.	3.3	9
14	Optimal liver metabolism and proliferation require the tight junction protein claudin-3. Journal of Hepatology, 2020, 73, S245-S246.	3.7	0
15	The extracellular domain of angulin-1 and palmitoylation of its cytoplasmic region are required for angulin-1 assembly at tricellular contacts. Journal of Biological Chemistry, 2020, 295, 4289-4302.	3.4	16
16	Physiological functions of junctional adhesion molecules (JAMs) in tight junctions. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183299.	2.6	35
17	The septate junction protein Tetraspanin 2A is critical to the structure and function of Malpighian tubules in <i>Drosophila melanogaster</i> . American Journal of Physiology - Cell Physiology, 2020, 318, C1107-C1122.	4.6	14
18	Septate junctions regulate gut homeostasis through regulation of stem cell proliferation and enterocyte behavior in <i>Drosophila</i> . Journal of Cell Science, 2019, 132, .	2.0	25

#	Article	IF	CITATIONS
19	Claudins and JAM-A coordinately regulate tight junction formation and epithelial polarity. Journal of Cell Biology, 2019, 218, 3372-3396.	5.2	152
20	Claudin-3-deficient C57BL/6J mice display intact brain barriers. Scientific Reports, 2019, 9, 203.	3.3	68
21	<i>Ripply3</i> is required for the maintenance of epithelial sheets in the morphogenesis of pharyngeal pouches. Development Growth and Differentiation, 2018, 60, 87-96.	1.5	3
22	Molecular dissection of smooth septate junctions: understanding their roles in arthropod physiology. Annals of the New York Academy of Sciences, 2017, 1397, 17-24.	3.8	29
23	Targeted Disruption of JCAD (Junctional Protein Associated With Coronary Artery Disease)/KIAA1462, a Coronary Artery Disease–Associated Gene Product, Inhibits Angiogenic Processes In Vitro and In Vivo. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1667-1673.	2.4	25
24	Claudin-4 knockout by TALEN-mediated gene targeting in MDCK cells: Claudin-4 is dispensable for the permeability properties of tight junctions in wild-type MDCK cells. PLoS ONE, 2017, 12, e0182521.	2.5	8
25	Effects of Osmolality on Paracellular Transport in MDCK II Cells. PLoS ONE, 2016, 11, e0166904.	2.5	14
26	A tetraspanin regulates septate junction formation in <i>Drosophila</i> midgut. Journal of Cell Science, 2016, 129, 1155-64.	2.0	45
27	Epidermal cell turnover across tight junctions based on Kelvin's tetrakaidecahedron cell shape. ELife, 2016, 5, .	6.0	81
28	A tetraspanin regulates septate junction formation in <i>Drosophila</i> midgut. Development (Cambridge), 2016, 143, e1.1-e1.1.	2.5	2
29	Downsloping High-Frequency Hearing Loss Due to Inner Ear Tricellular Tight Junction Disruption by a Novel ILDR1 Mutation in the Ig-Like Domain. PLoS ONE, 2015, 10, e0116931.	2.5	20
30	Claudin-2 Knockout by TALEN-Mediated Gene Targeting in MDCK Cells: Claudin-2 Independently Determines the Leaky Property of Tight Junctions in MDCK Cells. PLoS ONE, 2015, 10, e0119869.	2.5	35
31	Deficiency of Angulin-2/ILDR1, a Tricellular Tight Junction-Associated Membrane Protein, Causes Deafness with Cochlear Hair Cell Degeneration in Mice. PLoS ONE, 2015, 10, e0120674.	2.5	40
32	Epidermal tight junction barrier function is altered by skin inflammation, but not by filaggrin-deficient stratum corneum. Journal of Dermatological Science, 2015, 77, 28-36.	1.9	77
33	Effects of Hydrostatic Pressure on Carcinogenic Properties of Epithelia. PLoS ONE, 2015, 10, e0145522.	2.5	6
34	ZO-1 Knockout by TALEN-Mediated Gene Targeting in MDCK Cells: Involvement of ZO-1 in the Regulation of Cytoskeleton and Cell Shape. PLoS ONE, 2014, 9, e104994.	2.5	72
35	Localization of Angulin-1/LSR and Tricellulin at Tricellular Contacts of Brain and Retinal Endothelial Cells <i>in vivo</i> . Cell Structure and Function, 2014, 39, 1-8.	1.1	63
36	Molecular organization of tricellular tight junctions. Tissue Barriers, 2014, 2, e28960.	3.2	106

Mikio Furuse

#	Article	IF	CITATIONS
37	Tricellulin regulates junctional tension of epithelial cells at tricellular contacts via Cdc42. Journal of Cell Science, 2014, 127, 4201-12.	2.0	60
38	Deafness in occludin-deficient mice with dislocation of tricellulin and progressive apoptosis of the hair cells. Biology Open, 2014, 3, 759-766.	1.2	61
39	Molecular organization and function of invertebrate occluding junctions. Seminars in Cell and Developmental Biology, 2014, 36, 186-193.	5.0	88
40	<scp>JNK</scp> 1/2â€dependent phosphorylation of angulinâ€1/ <scp>LSR</scp> is required for the exclusive localization of angulinâ€1/ <scp>LSR</scp> and tricellulin at tricellular contacts in EpH4 epithelial sheet. Genes To Cells, 2014, 19, 565-581.	1.2	25
41	Analysis of the angulin family consisting of LSR, ILDR1 and ILDR2: tricellulin recruitment, epithelial barrier function and implication in deafness pathogenesis. Journal of Cell Science, 2013, 126, 966-77.	2.0	170
42	Claudin-2 Regulates Colorectal Inflammation via Myosin Light Chain Kinase-Dependent Signaling. Digestive Diseases and Sciences, 2013, 58, 1546-1559.	2.3	34
43	Tight junction dysfunction in the stratum granulosum leads to aberrant stratum corneum barrier function in claudin-1-deficient mice. Journal of Dermatological Science, 2013, 70, 12-18.	1.9	111
44	Contribution of Tight Junction Proteins to Ion, Macromolecule, and Water Barrier in Keratinocytes. Journal of Investigative Dermatology, 2013, 133, 1161-1169.	0.7	136
45	Analysis of the â€~angulin' proteins LSR, ILDR1 and ILDR2 – tricellulin recruitment, epithelial barrier function and implication in deafness pathogenesis. Journal of Cell Science, 2013, 126, 3797-3797.	2.0	58
46	The blood- brain barrier and barrier function in vivo: the role of tight junctions. Drug Delivery System, 2013, 28, 279-286.	0.0	1
47	A "Tric―to tighten cell-cell junctions in the cochlea for hearing. Journal of Clinical Investigation, 2013, 123, 3712-3715.	8.2	8
48	Altered expression of tight junction molecules in alveolar septa in lung injury and fibrosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 302, L193-L205.	2.9	113
49	A novel smooth septate junction-associated membrane protein, Snakeskin, is required for intestinal barrier function in Drosophila. Journal of Cell Science, 2012, 125, 1980-90.	2.0	43
50	A novel protein complex, mesh-ssk, is required for septate junction formation in <i>drosophila</i> midgut. Journal of Cell Science, 2012, 125, 4923-33.	2.0	66
51	Promotion of Lymphatic Integrity by Angiopoietin-1/Tie2 Signaling during Inflammation. American Journal of Pathology, 2012, 180, 1273-1282.	3.8	38
52	Lipolysisâ€stimulated lipoprotein receptor: a novel membrane protein of tricellular tight junctions. Annals of the New York Academy of Sciences, 2012, 1257, 54-58.	3.8	29
53	Claudinâ€5 haploinsufficiency exacerbates <scp>UVB</scp> â€induced oedema formation by inducing lymphatic vessel leakage. Experimental Dermatology, 2012, 21, 557-559.	2.9	14
54	Claudins and renal salt transport. Clinical and Experimental Nephrology, 2012, 16, 61-67.	1.6	25

#	Article	IF	CITATIONS
55	A coronary artery disease-associated gene product, JCAD/KIAA1462, is a novel component of endothelial cell–cell junctions. Biochemical and Biophysical Research Communications, 2011, 413, 224-229.	2.1	36
56	Tight junctions in epidermis: from barrier to keratinization. European Journal of Dermatology, 2011, 21, 12-17.	0.6	46
57	Phosphorylation state regulates the localization of Scribble at adherens junctions and its association with E-cadherin–catenin complexes. Experimental Cell Research, 2011, 317, 413-422.	2.6	22
58	1H, 13C, and 15N resonance assignment of the first PDZ domain of mouse ZO-1. Biomolecular NMR Assignments, 2011, 5, 207-210.	0.8	14
59	CD44 Regulates Tight-Junction Assembly and Barrier Function. Journal of Investigative Dermatology, 2011, 131, 932-943.	0.7	63
60	Claudin-4 induction by E-protein activity in later stages of CD4/8 double-positive thymocytes to increase positive selection efficiency. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4075-4080.	7.1	24
61	LSR defines cell corners for tricellular tight junction formation in epithelial cells. Journal of Cell Science, 2011, 124, 548-555.	2.0	206
62	In Vivo Imaging of Tight Junctions Using Claudin–EGFP Transgenic Medaka. Methods in Molecular Biology, 2011, 762, 171-178.	0.9	2
63	2P010 X-ray Crystallography of PDZ domain from LNX1, an E3 ubiquitin ligase regulating intercellular adhesion machinery(The 48th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2010, 50, S83.	0.1	0
64	abLIM3 is a novel component of adherens junctions with actin-binding activity. European Journal of Cell Biology, 2010, 89, 807-816.	3.6	17
65	The Drosophila Claudin Kune-kune Is Required for Septate Junction Organization and Tracheal Tube Size Control. Genetics, 2010, 185, 831-839.	2.9	94
66	Molecular Basis of the Core Structure of Tight Junctions. Cold Spring Harbor Perspectives in Biology, 2010, 2, a002907-a002907.	5.5	321
67	Claudin-2–deficient mice are defective in the leaky and cation-selective paracellular permeability properties of renal proximal tubules. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8011-8016.	7.1	257
68	Flightless-I (Fli-I) Regulates the Actin Assembly Activity of Diaphanous-related Formins (DRFs) Daam1 and mDia1 in Cooperation with Active Rho GTPase. Journal of Biological Chemistry, 2010, 285, 16231-16238.	3.4	38
69	The E3 ubiquitin ligase LNX1p80 promotes the removal of claudins from tight junctions in MDCK cells. Journal of Cell Science, 2009, 122, 985-994.	2.0	92
70	Similar and Distinct Properties of MUPP1 and Patj, Two Homologous PDZ Domain-Containing Tight-Junction Proteins. Molecular and Cellular Biology, 2009, 29, 2372-2389.	2.3	76
71	Generation of transgenic medaka expressing claudin7-EGFP for imaging of tight junctions in living medaka embryos. Cell and Tissue Research, 2009, 335, 465-471.	2.9	6
72	The Role of Claudinâ€Based Tight Junctions in Morphogenesis. Annals of the New York Academy of Sciences, 2009, 1165, 58-61.	3.8	21

#	Article	IF	CITATIONS
73	Knockout animals and natural mutations as experimental and diagnostic tool for studying tight junction functions in vivo. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 813-819.	2.6	66

1P-238 Search for compounds that modulate tight-junction activity : structural biology and computational approaches(Bioinformatics:Structural genomics, The 47th Annual Meeting of the) Tj ETQq0 0 0 rgBD/Dverloclo 10 Tf 50 6 74

75	Identification of adherens junction-associated GTPase activating proteins by the fluorescence localization-based expression cloning. Experimental Cell Research, 2008, 314, 939-949.	2.6	21
76	Megaintestine in Claudin-15–Deficient Mice. Gastroenterology, 2008, 134, 523-534.e3.	1.3	182
77	Loss of Occludin Affects Tricellular Localization of Tricellulin. Molecular Biology of the Cell, 2008, 19, 4687-4693.	2.1	172
78	Requirement of ZO-1 for the formation of belt-like adherens junctions during epithelial cell polarization. Journal of Cell Biology, 2007, 176, 779-786.	5.2	151
79	Tight junctions containing claudin 4 and 6 are essential for blastocyst formation in preimplantation mouse embryos. Developmental Biology, 2007, 312, 509-522.	2.0	122
80	Molecular characterization of angiomotin/JEAP family proteins: interaction with MUPP1/Patj and their endogenous properties. Genes To Cells, 2007, 12, 473-486.	1.2	83
81	ZO-1 and ZO-2 Independently Determine Where Claudins Are Polymerized in Tight-Junction Strand Formation. Cell, 2006, 126, 741-754.	28.9	685
82	Claudins in occluding junctions of humans and flies. Trends in Cell Biology, 2006, 16, 181-188.	7.9	486
83	Shoichiro Tsukita 1953–2005. Trends in Cell Biology, 2006, 16, 175.	7.9	0
83 84	Shoichiro Tsukita 1953–2005. Trends in Cell Biology, 2006, 16, 175. Tight junctions in Schwann cells of peripheral myelinated axons. Journal of Cell Biology, 2005, 169, 527-538.	7.9 5.2	0
	Tight junctions in Schwann cells of peripheral myelinated axons. Journal of Cell Biology, 2005, 169,		
84	Tight junctions in Schwann cells of peripheral myelinated axons. Journal of Cell Biology, 2005, 169, 527-538. Tricellulin constitutes a novel barrier at tricellular contacts of epithelial cells. Journal of Cell	5.2	176
84 85	Tight junctions in Schwann cells of peripheral myelinated axons. Journal of Cell Biology, 2005, 169, 527-538. Tricellulin constitutes a novel barrier at tricellular contacts of epithelial cells. Journal of Cell Biology, 2005, 171, 939-945. Establishment and Characterization of Cultured Epithelial Cells Lacking Expression of ZO-1. Journal	5.2 5.2	176 664
84 85 86	Tight junctions in Schwann cells of peripheral myelinated axons. Journal of Cell Biology, 2005, 169, 527-538. Tricellulin constitutes a novel barrier at tricellular contacts of epithelial cells. Journal of Cell Biology, 2005, 171, 939-945. Establishment and Characterization of Cultured Epithelial Cells Lacking Expression of ZO-1. Journal of Biological Chemistry, 2004, 279, 44785-44794. Compartmentalization established by claudin-11-based tight junctions in stria vascularis is required for hearing through generation of endocochlear potential. Journal of Cell Science, 2004, 117,	5.2 5.2 3.4	176 664 229
84 85 86 87	Tight junctions in Schwann cells of peripheral myelinated axons. Journal of Cell Biology, 2005, 169, 527-538. Tricellulin constitutes a novel barrier at tricellular contacts of epithelial cells. Journal of Cell Biology, 2005, 171, 939-945. Establishment and Characterization of Cultured Epithelial Cells Lacking Expression of ZO-1. Journal of Biological Chemistry, 2004, 279, 44785-44794. Compartmentalization established by claudin-11-based tight junctions in stria vascularis is required for hearing through generation of endocochlear potential. Journal of Cell Science, 2004, 117, 5087-5096. JACOP, a Novel Plaque Protein Localizing at the Apical Junctional Complex with Sequence Similarity to	5.2 5.2 3.4 2.0	176 664 229 169

#	Article	IF	CITATIONS
91	Expression patterns of claudins, tight junction adhesion molecules, in the inner ear. Hearing Research, 2004, 187, 25-34.	2.0	166
92	Claudins in Caenorhabditis elegans. Current Biology, 2003, 13, 1042-1046.	3.9	79
93	Expression of claudinâ€5 in dermal vascular endothelia. Experimental Dermatology, 2003, 12, 289-295.	2.9	52
94	Expression and distribution of ZO-3, a tight junction MAGUK protein, in mouse tissues. Genes To Cells, 2003, 8, 837-845.	1.2	69
95	Characteristics of Claudin Expression in Follicle-Associated Epithelium of Peyer's Patches: Preferential Localization of Claudin-4 at the Apex of the Dome Region. Laboratory Investigation, 2003, 83, 1045-1053.	3.7	67
96	Regulation of tight junctions during the epithelium-mesenchyme transition:direct repression of the gene expression of claudins/occludin by Snail. Journal of Cell Science, 2003, 116, 1959-1967.	2.0	584
97	Size-selective loosening of the blood-brain barrier in claudin-5–deficient mice. Journal of Cell Biology, 2003, 161, 653-660.	5.2	1,557
98	Dynamic behavior of paired claudin strands within apposing plasma membranes. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 3971-3976.	7.1	209
99	Overexpression of Interferon α/β Receptor β Chain in Fetal Down Syndrome Brain. Neuroembryology and Aging, 2003, 2, 147-155.	0.1	8
100	Multi-PDZ Domain Protein 1 (MUPP1) Is Concentrated at Tight Junctions through Its Possible Interaction with Claudin-1 and Junctional Adhesion Molecule. Journal of Biological Chemistry, 2002, 277, 455-461.	3.4	316
101	Claudin-based tight junctions are crucial for the mammalian epidermal barrier. Journal of Cell Biology, 2002, 156, 1099-1111.	5.2	1,336
102	Claudin-based barrier in simple and stratified cellular sheets. Current Opinion in Cell Biology, 2002, 14, 531-536.	5.4	328
103	Molecular Architecture of Tight Junctions of Periderm Differs From That of the Maculae Occludentes of Epidermis. Journal of Investigative Dermatology, 2002, 118, 1073-1079.	0.7	54
104	Differential Expression Patterns of Claudins, Tight Junction Membrane Proteins, in Mouse Nephron Segments. Journal of the American Society of Nephrology: JASN, 2002, 13, 875-886.	6.1	407
105	Multifunctional strands in tight junctions. Nature Reviews Molecular Cell Biology, 2001, 2, 285-293.	37.0	2,198
106	Conversion of <i>Zonulae Occludentes</i> from Tight to Leaky Strand Type by Introducing Claudin-2 into Madin-Darby Canine Kidney I Cells. Journal of Cell Biology, 2001, 153, 263-272.	5.2	667
107	Junctional adhesion molecule (JAM) binds to PAR-3. Journal of Cell Biology, 2001, 154, 491-498.	5.2	346
108	Pores in the Wall. Journal of Cell Biology, 2000, 149, 13-16.	5.2	428

#	Article	IF	CITATIONS
109	Clostridium perfringensenterotoxin binds to the second extracellular loop of claudin-3, a tight junction integral membrane protein. FEBS Letters, 2000, 476, 258-261.	2.8	257
110	Complex Phenotype of Mice Lacking Occludin, a Component of Tight Junction Strands. Molecular Biology of the Cell, 2000, 11, 4131-4142.	2.1	1,005
111	The Structure and Function of Claudins, Cell Adhesion Molecules at Tight Junctions. Annals of the New York Academy of Sciences, 2000, 915, 129-135.	3.8	202
112	Claudins: Structural and Functional Molecular Constituents of Tight Junction Barrier Seibutsu Butsuri, 2000, 40, 229-233.	0.1	0
113	Endothelial Claudin. Journal of Cell Biology, 1999, 147, 185-194.	5.2	774
114	Claudin-11/OSP-based Tight Junctions of Myelin Sheaths in Brain and Sertoli Cells in Testis. Journal of Cell Biology, 1999, 145, 579-588.	5.2	413
115	<i>Clostridium perfringens</i> Enterotoxin Fragment Removes Specific Claudins from Tight Junction Strands. Journal of Cell Biology, 1999, 147, 195-204.	5.2	592
116	Direct Binding of Three Tight Junction-Associated Maguks, Zo-1, Zo-2, and Zo-3, with the Cooh Termini of Claudins. Journal of Cell Biology, 1999, 147, 1351-1363.	5.2	993
117	Claudin multigene family encoding four-transmembrane domain protein components of tight junction strands. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 511-516.	7.1	1,050
118	Manner of Interaction of Heterogeneous Claudin Species within and between Tight Junction Strands. Journal of Cell Biology, 1999, 147, 891-903.	5.2	662
119	Structural and signalling molecules come together at tight junctions. Current Opinion in Cell Biology, 1999, 11, 628-633.	5.4	301
120	Ca2+-independent cell-adhesion activity of claudins, a family of integral membrane proteins localized at tight junctions. Current Biology, 1999, 9, 1035-S1.	3.9	173
121	Occludin and claudins in tight-junction strands: leading or supporting players?. Trends in Cell Biology, 1999, 9, 268-273.	7.9	544
122	Differential behavior of E-cadherin and occludin in their colocalization with ZO-1 during the establishment of epithelial cell polarity. , 1999, 179, 115-125.		151
123	Subcellular Distribution of Tight Junction-Associated Proteins (Occludin, ZO-1, ZO-2) in Rodent Skin. Journal of Investigative Dermatology, 1998, 110, 862-866.	0.7	116
124	Overcoming barriers in the study of tight junction functions: from occludin to claudin. Genes To Cells, 1998, 3, 569-573.	1.2	89
125	Claudin-1 and -2: Novel Integral Membrane Proteins Localizing at Tight Junctions with No Sequence Similarity to Occludin. Journal of Cell Biology, 1998, 141, 1539-1550.	5.2	1,875
126	A Single Gene Product, Claudin-1 or -2, Reconstitutes Tight Junction Strands and Recruits Occludin in Fibroblasts. Journal of Cell Biology, 1998, 143, 391-401.	5.2	842

#	Article	IF	CITATIONS
127	Occludin-deficient Embryonic Stem Cells Can Differentiate into Polarized Epithelial Cells Bearing Tight Junctions. Journal of Cell Biology, 1998, 141, 397-408.	5.2	490
128	Occludin is concentrated at tight junctions of mouse/rat but not human/guinea pig Sertoli cells in testes. American Journal of Physiology - Cell Physiology, 1998, 274, C1708-C1717.	4.6	133
129	Possible Involvement of Phosphorylation of Occludin in Tight Junction Formation. Journal of Cell Biology, 1997, 137, 1393-1401.	5.2	526
130	Interspecies diversity of the occludin sequence: cDNA cloning of human, mouse, dog, and rat-kangaroo homologues Journal of Cell Biology, 1996, 133, 43-47.	5.2	307
131	Molecular Dissection of Tight Junctions Cell Structure and Function, 1996, 21, 381-385.	1.1	55
132	Direct association of occludin with ZO-1 and its possible involvement in the localization of occludin at tight junctions Journal of Cell Biology, 1994, 127, 1617-1626.	5.2	876
133	Nuclear Localization and Transforming Activity of Human Papillomavirus Type 16 E7-β-Galactosidase Fusion Protein: Characterization of the Nuclear Localization Sequence. Virology, 1994, 204, 789-793.	2.4	21
134	Occludin: a novel integral membrane protein localizing at tight junctions Journal of Cell Biology, 1993, 123, 1777-1788.	5.2	2,281
135	Induction of strong homotypic adhesion in human T cell lines positive with human T-cell leukemia virus type 1 by monoclonal antibodies to MHC class I and β2-microglobulin. Cellular Immunology, 1992, 143, 298-309.	3.0	4
136	Strong induction of ICAMâ€1 in human T cells transformed by human Tâ€cellâ€leukemia virus type 1 and depression of ICAMâ€1 or LFAâ€1 in adult Tâ€cellâ€leukemiaâ€derived cell lines. International Journal of Cancer, 1992, 52, 418-427.	5.1	73