Hemant Choudhary

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8544387/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Direct Synthesis of 1,6â€Hexanediol from HMF over a Heterogeneous Pd/ZrP Catalyst using Formic Acid as Hydrogen Source. ChemSusChem, 2014, 7, 96-100.	3.6	196
2	Metal-free oxidative synthesis of succinic acid from biomass-derived furan compounds using a solid acid catalyst with hydrogen peroxide. Applied Catalysis A: General, 2013, 458, 55-62.	2.2	124
3	Highly Efficient Aqueous Oxidation of Furfural to Succinic Acid Using Reusable Heterogeneous Acid Catalyst with Hydrogen Peroxide. Chemistry Letters, 2012, 41, 409-411.	0.7	91
4	Two Herbicides in a Single Compound: Double Salt Herbicidal Ionic Liquids Exemplified with Glyphosate, Dicamba, and MCPA. ACS Sustainable Chemistry and Engineering, 2017, 5, 6261-6273.	3.2	62
5	Synthesis of high-value organic acids from sugars promoted by hydrothermally loaded Cu oxide species on magnesia. Applied Catalysis B: Environmental, 2015, 162, 1-10.	10.8	54
6	Hydrotalcite-supported PdPt-catalyzed Aerobic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid in Water. Chemistry Letters, 2016, 45, 613-615.	0.7	43
7	Ionic liquids for sustainable processes: Liquid metal catalysis. Current Opinion in Green and Sustainable Chemistry, 2018, 11, 15-21.	3.2	40
8	lonic Liquid Platform for Spinning Composite Chitin–Poly(lactic acid) Fibers. ACS Sustainable Chemistry and Engineering, 2018, 6, 10241-10251.	3.2	39
9	In Search of Stronger/Cheaper Chitin Nanofibers through Electrospinning of Chitin–Cellulose Composites Using an Ionic Liquid Platform. ACS Sustainable Chemistry and Engineering, 2018, 6, 14713-14722.	3.2	36
10	Tailored design of palladium species grafted on an amino functionalized organozinc coordination polymer as a highly pertinent heterogeneous catalyst. Journal of Materials Chemistry A, 2014, 2, 18687-18696.	5.2	30
11	Synthesis of Formic Acid from Monosaccharides Using Calcined Mg-Al Hydrotalcite as Reusable Catalyst in the Presence of Aqueous Hydrogen Peroxide. Organic Process Research and Development, 2015, 19, 449-453.	1.3	23
12	Towards understanding of delignification of grassy and woody biomass in cholinium-based ionic liquids. Green Chemistry, 2021, 23, 6020-6035.	4.6	22
13	A predictive toolset for the identification of effective lignocellulosic pretreatment solvents: a case study of solvents tailored for lignin extraction. Green Chemistry, 2021, 23, 7269-7289.	4.6	22
14	Solubility Studies of Cyclosporine Using Ionic Liquids. ACS Omega, 2019, 4, 7938-7943.	1.6	18
15	Selective Oxidation of 1,6â€Hexanediol to 6â€Hydroxycaproic Acid over Reusable Hydrotalcite‧upported Au–Pd Bimetallic Catalysts. ChemSusChem, 2015, 8, 1862-1866.	3.6	16
16	Hydrothermal Preparation of a Robust Boehmiteâ€Supported <i>N</i> , <i>N</i> â€Dimethyldodecylamine <i>N</i> â€Oxideâ€Capped Cobalt and Palladium Catalyst for the Facile Utilization of Formic Acid as a Hydrogen Source. ChemCatChem, 2015, 7, 2361-2369.	1.8	16
17	Can Multiple lons in an lonic Liquid Improve the Biomass Pretreatment Efficacy?. ACS Sustainable Chemistry and Engineering, 2021, 9, 4371-4376.	3.2	15
18	Azolate Anions in Ionic Liquids: Promising and Underâ€Utilized Components of the Ionic Liquid Toolbox. Chemistry - A European Journal, 2019, 25, 2127-2140.	1.7	13

HEMANT CHOUDHARY

#	Article	IF	CITATIONS
19	Ionic liquids in cross-coupling reactions: "liquid―solutions to a "solid―precipitation problem. Chemical Communications, 2018, 54, 2056-2059.	2.2	12
20	Can Melting Point Trends Help Us Develop New Tools To Control the Crystal Packing of Weakly Interacting Ions?. Crystal Growth and Design, 2018, 18, 597-601.	1.4	11
21	Confusing Ions on Purpose: How Many Parent Acid Molecules Can Be Incorporated in a Herbicidal Ionic Liquid?. ACS Sustainable Chemistry and Engineering, 2021, 9, 1941-1948.	3.2	11
22	Surfactantâ€Assisted Suzuki–Miyaura Coupling Reaction of Unreactive Chlorobenzene over Hydrotalcite‧upported Palladium Catalyst. Asian Journal of Organic Chemistry, 2017, 6, 274-277.	1.3	9
23	Structural Diversity in Tetrakis(4-pyridyl)porphyrin Supramolecular Building Blocks. Crystal Growth and Design, 2019, 19, 3529-3542.	1.4	9
24	Revisiting Theoretical Tools and Approaches for the Valorization of Recalcitrant Lignocellulosic Biomass to Value-Added Chemicals. Frontiers in Energy Research, 0, 10, .	1.2	9
25	Association of gene expression with syringyl to guaiacyl ratio in sugarcane lignin. Plant Molecular Biology, 2021, 106, 173-192.	2.0	8
26	Enhanced Acidity and Activity of Aluminum/Gallium-Based Ionic Liquids Resulting from Dynamic Anionic Speciation. ACS Catalysis, 2019, 9, 9789-9793.	5.5	5
27	A Convenient Surfactantâ€Mediated Hydrothermal Approach to Control Supported Copper Oxide Species for Catalytic Upgrading of Glucose to Lactic Acid. ChemNanoMat, 2015, 1, 511-516.	1.5	4
28	Double Salt Ionic Liquids for Lignin Hydrolysis: One Cation for Catalyst and Solvent Anions. ECS Transactions, 2018, 86, 215-229.	0.3	3
29	Comparative Study on the Pretreatment of Aspen and Maple With 1-Ethyl-3-methylimidazolium Acetate and Cholinium Lysinate. Frontiers in Energy Research, 2022, 10, .	1.2	3
30	Active Pharmaceutical Ingredient Ionic Liquid: A New Platform for the Pharmaceutical Industry. , 2019, , 1-14.		2
31	Double Salt Ionic Liquids for Lignin Hydrolysis: One Cation for Catalyst and Solvent Anions. ECS Meeting Abstracts, 2018, , .	0.0	1