Fantao Kong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8544374/publications.pdf Version: 2024-02-01

FANTAO KONC

#	Article	IF	CITATIONS
1	Occurrence of antibiotics in waters, removal by microalgae-based systems, and their toxicological effects: A review. Science of the Total Environment, 2022, 813, 151891.	3.9	50
2	Kinetic modeling and process analysis for photo-production of β-carotene in Dunaliella salina. Bioresources and Bioprocessing, 2022, 9, .	2.0	3
3	The Chlamydomonas transcription factor MYB1 mediates lipid accumulation under nitrogen depletion. New Phytologist, 2022, 235, 595-610.	3.5	6
4	Differences in Glycerolipid Response of Chlamydomonas reinhardtii Starchless Mutant to High Light and Nitrogen Deprivation Stress Under Three Carbon Supply Regimes. Frontiers in Plant Science, 2022, 13, .	1.7	2
5	Genome editing approaches applied to microalgae-based fuels. , 2022, , 47-64.		2
6	Enhanced accumulation of oil through co-expression of fatty acid and ABC transporters in Chlamydomonas under standard growth conditions. , 2022, 15, .		11
7	Pilot outdoor cultivation of an extreme alkalihalophilic Trebouxiophyte in a floating photobioreactor using bicarbonate as carbon source. Journal of Cleaner Production, 2021, 283, 124648.	4.6	16
8	The disassembly of lipid droplets in Chlamydomonas. New Phytologist, 2021, 231, 1359-1364.	3.5	19
9	Glowing plants can light up the night sky? A review. Biotechnology and Bioengineering, 2021, 118, 3706-3715.	1.7	2
10	Chlamydomonas cell cycle mutant crcdc5 over-accumulates starch and oil. Biochimie, 2020, 169, 54-61.	1.3	13
11	Cost-Effective and Efficient Production of Carbohydrates from an Alkalihalophilic <i>Leptolyngbya</i> sp. in a Photobioreactor with Periodical Mixing. ACS Sustainable Chemistry and Engineering, 2020, 8, 15310-15316.	3.2	10
12	The phosphatidylethanolamine-binding protein DTH1 mediates degradation of lipid droplets in <i>Chlamydomonas reinhardtii</i> . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23131-23139.	3.3	14
13	Seawater supplemented with bicarbonate for efficient marine microalgae production in floating photobioreactor on ocean: A case study of Chlorella sp Science of the Total Environment, 2020, 738, 139439.	3.9	28
14	Galactolipid DGDG and Betaine Lipid DGTS Direct De Novo Synthesized Linolenate into Triacylglycerol in a Stress-Induced Starchless Mutant of Chlamydomonas reinhardtii. Plant and Cell Physiology, 2020, 61, 851-862.	1.5	11
15	Efficient CO2 capture from the air for high microalgal biomass production by a bicarbonate Pool. Journal of CO2 Utilization, 2020, 37, 320-327.	3.3	51
16	ROS Induce Î ² -Carotene Biosynthesis Caused by Changes of Photosynthesis Efficiency and Energy Metabolism in Dunaliella salina Under Stress Conditions. Frontiers in Bioengineering and Biotechnology, 2020, 8, 613768.	2.0	25
17	CrABCA2 Facilitates Triacylglycerol Accumulation in under Nitrogen Starvation. Molecules and Cells, 2020, 43, 48-57.	1.0	5
18	Molecular Genetic Tools and Emerging Synthetic Biology Strategies to Increase Cellular Oil Content in Chlamydomonas reinhardtii. Plant and Cell Physiology, 2019, 60, 1184-1196.	1.5	41

ΓΑΝΤΑΟ ΚΟΝG

#	Article	IF	CITATIONS
19	The bZIP1 Transcription Factor Regulates Lipid Remodeling and Contributes to ER Stress Management in <i>Chlamydomonas reinhardtii</i> . Plant Cell, 2019, 31, 1127-1140.	3.1	34
20	Branched-Chain Amino Acid Catabolism Impacts Triacylglycerol Homeostasis in <i>Chlamydomonas reinhardtii</i> . Plant Physiology, 2019, 179, 1502-1514.	2.3	26
21	Progress on the development of floating photobioreactor for microalgae cultivation and its application potential. World Journal of Microbiology and Biotechnology, 2019, 35, 190.	1.7	35
22	Lipid catabolism in microalgae. New Phytologist, 2018, 218, 1340-1348.	3.5	83
23	Interorganelle Communication: Peroxisomal MALATE DEHYDROGENASE2 Connects Lipid Catabolism to Photosynthesis through Redox Coupling in Chlamydomonas. Plant Cell, 2018, 30, 1824-1847.	3.1	51
24	Identification of Insertion Site by RESDA-PCR in Chlamydomonas Mutants Generated by AphVIII Random Insertional Mutagenesis. Bio-protocol, 2018, 8, e2718.	0.2	2
25	<i>Chlamydomonas</i> carries out fatty acid βâ€oxidation in ancestral peroxisomes using a bona fide acylâ€CoA oxidase. Plant Journal, 2017, 90, 358-371.	2.8	80
26	UV-mediated Chlamydomonas mutants with enhanced nuclear transgene expression by disruption of DNA methylation-dependent and independent silencing systems. Plant Molecular Biology, 2016, 92, 629-641.	2.0	23
27	Whole Genome Re-Sequencing Identifies a Quantitative Trait Locus Repressing Carbon Reserve Accumulation during Optimal Growth in Chlamydomonas reinhardtii. Scientific Reports, 2016, 6, 25209.	1.6	12
28	Robust expression of heterologous genes by selection marker fusion system in improved Chlamydomonas strains. Journal of Bioscience and Bioengineering, 2015, 120, 239-245.	1.1	32
29	Expression levels of domestic cDNA cassettes integrated in the nuclear genomes of various Chlamydomonas reinhardtii strains. Journal of Bioscience and Bioengineering, 2014, 117, 613-616.	1.1	21
30	Mesoporous TiO2nanoparticles: A new material for biolistic bombardment. Phycological Research, 2013, 61, 58-60.	0.8	3