Britton Jeter

List of Publications by Citations

Source: https://exaly.com/author-pdf/8544313/britton-jeter-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

31 3,536 17 31 g-index

31 5,953 7 3.06 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
31	First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. <i>Astrophysical Journal Letters</i> , 2019 , 875, L1	7.9	1110
30	First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole. <i>Astrophysical Journal Letters</i> , 2019 , 875, L6	7.9	466
29	First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring. <i>Astrophysical Journal Letters</i> , 2019 , 875, L5	7.9	429
28	First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole. <i>Astrophysical Journal Letters</i> , 2019 , 875, L4	7.9	411
27	First M87 Event Horizon Telescope Results. II. Array and Instrumentation. <i>Astrophysical Journal Letters</i> , 2019 , 875, L2	7.9	325
26	First M87 Event Horizon Telescope Results. III. Data Processing and Calibration. <i>Astrophysical Journal Letters</i> , 2019 , 875, L3	7.9	267
25	The Event Horizon General Relativistic Magnetohydrodynamic Code Comparison Project. <i>Astrophysical Journal, Supplement Series</i> , 2019 , 243, 26	8	96
24	First M87 Event Horizon Telescope Results. VIII. Magnetic Field Structure near The Event Horizon. <i>Astrophysical Journal Letters</i> , 2021 , 910, L13	7.9	70
23	First M87 Event Horizon Telescope Results. VII. Polarization of the Ring. <i>Astrophysical Journal Letters</i> , 2021 , 910, L12	7.9	58
22	Polarimetric Properties of Event Horizon Telescope Targets from ALMA. <i>Astrophysical Journal Letters</i> , 2021 , 910, L14	7.9	28
21	THEMIS: A Parameter Estimation Framework for the Event Horizon Telescope. <i>Astrophysical Journal</i> , 2020 , 897, 139	4.7	24
20	First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way. <i>Astrophysical Journal Letters</i> , 2022 , 930, L12	7.9	23
19	Event Horizon Telescope imaging of the archetypal blazar 3C 279 at an extreme 20 microarcsecond resolution. <i>Astronomy and Astrophysics</i> , 2020 , 640, A69	5.1	21
18	Monitoring the Morphology of M87* in 2009\(\textit{D017} \) with the Event Horizon Telescope. <i>Astrophysical Journal</i> , 2020 , 901, 67	4.7	20
17	First Sagittarius A* Event Horizon Telescope Results. III. Imaging of the Galactic Center Supermassive Black Hole. <i>Astrophysical Journal Letters</i> , 2022 , 930, L14	7.9	20
16	Verification of Radiative Transfer Schemes for the EHT. Astrophysical Journal, 2020, 897, 148	4.7	18
15	First Sagittarius A* Event Horizon Telescope Results. V. Testing Astrophysical Models of the Galactic Center Black Hole. <i>Astrophysical Journal Letters</i> , 2022 , 930, L16	7.9	18

LIST OF PUBLICATIONS

14	Broadband Multi-wavelength Properties of M87 during the 2017 Event Horizon Telescope Campaign. <i>Astrophysical Journal Letters</i> , 2021 , 911, L11	7.9	16
13	First Sagittarius A* Event Horizon Telescope Results. II. EHT and Multiwavelength Observations, Data Processing, and Calibration. <i>Astrophysical Journal Letters</i> , 2022 , 930, L13	7.9	16
12	First Sagittarius A* Event Horizon Telescope Results. IV. Variability, Morphology, and Black Hole Mass. <i>Astrophysical Journal Letters</i> , 2022 , 930, L15	7.9	16
11	First Sagittarius A* Event Horizon Telescope Results. VI. Testing the Black Hole Metric. <i>Astrophysical Journal Letters</i> , 2022 , 930, L17	7.9	14
10	Event Horizon Telescope observations of the jet launching and collimation in Centaurus A. <i>Nature Astronomy</i> ,	12.1	13
9	Millimeter Light Curves of Sagittarius A* Observed during the 2017 Event Horizon Telescope Campaign. <i>Astrophysical Journal Letters</i> , 2022 , 930, L19	7.9	11
8	Characterizing and Mitigating Intraday Variability: Reconstructing Source Structure in Accreting Black Holes with mm-VLBI. <i>Astrophysical Journal Letters</i> , 2022 , 930, L21	7.9	9
7	A Universal Power-law Prescription for Variability from Synthetic Images of Black Hole Accretion Flows. <i>Astrophysical Journal Letters</i> , 2022 , 930, L20	7.9	8
6	The Polarized Image of a Synchrotron-emitting Ring of Gas Orbiting a Black Hole. <i>Astrophysical Journal</i> , 2021 , 912, 35	4.7	7
5	Differentiating disc and black hole-driven jets with EHT images of variability in M87. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 493, 5606-5616	4.3	7
4	Selective Dynamical Imaging of Interferometric Data. Astrophysical Journal Letters, 2022, 930, L18	7.9	7
3	Impact of Accretion Flow Dynamics on Gas-dynamical Black Hole Mass Estimates. <i>Astrophysical Journal</i> , 2019 , 882, 82	4.7	4
2	The Variability of the Black Hole Image in M87 at the Dynamical Timescale. <i>Astrophysical Journal</i> , 2022 , 925, 13	4.7	2
1	Reconciling EHT and Gas-dynamics Measurements in M87: Is the Jet Misaligned at Parsec Scales?. <i>Astrophysical Journal</i> , 2021 , 908, 139	4.7	2