Angelo Keramidas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8543755/publications.pdf

Version: 2024-02-01

39 papers

1,557 citations

331538 21 h-index 38 g-index

41 all docs

41 docs citations

41 times ranked

1888 citing authors

#	Article	IF	CITATIONS
1	Pharmacological activation of ATF6 remodels the proteostasis network to rescue pathogenic GABAA receptors. Cell and Bioscience, 2022, 12, 48.	2.1	14
2	Proteostasis Regulators Restore Function of Epilepsy-Associated GABAA Receptors. Cell Chemical Biology, 2021, 28, 46-59.e7.	2.5	15
3	Regulation of NMDA receptor trafficking and gating by activity-dependent CaMKIIα phosphorylation of the GluN2A subunit. Cell Reports, 2021, 36, 109338.	2.9	21
4	A pain-causing and paralytic ant venom glycopeptide. IScience, 2021, 24, 103175.	1.9	7
5	The effects of insecticides on two splice variants of the glutamateâ€gated chloride channel receptor of the major malaria vector, <scp><i>Anopheles gambiae</i></scp> . British Journal of Pharmacology, 2020, 177, 175-187.	2.7	13
6	A Novel Glycine Receptor Variant with Startle Disease Affects Syndapin I and Glycinergic Inhibition. Journal of Neuroscience, 2020, 40, 4954-4969.	1.7	11
7	Effects of GluN2A and GluN2B gain-of-function epilepsy mutations on synaptic currents mediated by diheteromeric and triheteromeric NMDA receptors. Neurobiology of Disease, 2020, 140, 104850.	2.1	10
8	GluClR-mediated inhibitory postsynaptic currents reveal targets for ivermectin and potential mechanisms of ivermectin resistance. PLoS Pathogens, 2019, 15, e1007570.	2.1	22
9	Structure/Function Studies of the $\hat{l}\pm 4$ Subunit Reveal Evolutionary Loss of a GlyR Subtype Involved in Startle and Escape Responses. Frontiers in Molecular Neuroscience, 2018, 11, 23.	1.4	16
10	SAHA (Vorinostat) Corrects Inhibitory Synaptic Deficits Caused by Missense Epilepsy Mutations to the GABAA Receptor I ³ 2 Subunit. Frontiers in Molecular Neuroscience, 2018, 11, 89.	1.4	7
11	Probing the Structural Mechanism of Partial Agonism in Glycine Receptors Using the Fluorescent Artificial Amino Acid, ANAP. ACS Chemical Biology, 2017, 12, 805-813.	1.6	20
12	Multiple sodium channel isoforms mediate the pathological effects of Pacific ciguatoxin-1. Scientific Reports, 2017, 7, 42810.	1.6	67
13	Potent neuroprotection after stroke afforded by a double-knot spider-venom peptide that inhibits acid-sensing ion channel 1a. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3750-3755.	3.3	180
14	Inhibitory synapse deficits caused by familial $\hat{l}\pm 1$ GABAA receptor mutations in epilepsy. Neurobiology of Disease, 2017, 108, 213-224.	2.1	15
15	Physiological and pharmacological properties of inhibitory postsynaptic currents mediated by $\hat{1}\pm5\hat{1}^21\hat{1}^32$, $\hat{1}\pm5\hat{1}^22\hat{1}^32$ and $\hat{1}\pm5\hat{1}^23\hat{1}^32$ GABA A receptors. Neuropharmacology, 2017, 125, 243-253.	2.0	15
16	Structure-Function Analysis of the GlyR $\hat{l}\pm 2$ Subunit Autism Mutation p.R323L Reveals a Gain-of-Function. Frontiers in Molecular Neuroscience, 2017, 10, 158.	1.4	28
17	\hat{l}^31 -Containing GABA-A Receptors Cluster at Synapses Where they Mediate Slower Synaptic Currents than \hat{l}^32 -Containing GABA-A Receptors. Frontiers in Molecular Neuroscience, 2017, 10, 178.	1.4	10
18	Effects of glutamate and ivermectin on single glutamate-gated chloride channels of the parasitic nematode H. contortus. PLoS Pathogens, 2017, 13, e1006663.	2.1	27

#	Article	IF	Citations
19	The Free Zinc Concentration in the Synaptic Cleft of Artificial Glycinergic Synapses Rises to At least 1 $\hat{1}$ /4M. Frontiers in Molecular Neuroscience, 2016, 9, 88.	1.4	14
20	Investigating the Mechanism by Which Gain-of-function Mutations to the $\hat{l}\pm 1$ Glycine Receptor Cause Hyperekplexia. Journal of Biological Chemistry, 2016, 291, 15332-15341.	1.6	15
21	Ivermectin-Activated, Cation-Permeable Glycine Receptors for the Chemogenetic Control of Neuronal Excitation. ACS Chemical Neuroscience, 2016, 7, 1647-1657.	1.7	7
22	Zolpidem and eszopiclone prime $\hat{l}\pm 1\hat{l}^22\hat{l}^32$ <scp>GABA_A</scp> receptors for longer duration of activity. British Journal of Pharmacology, 2015, 172, 3522-3536.	2.7	26
23	Correlating Structural and Energetic Changes in Glycine Receptor Activation. Journal of Biological Chemistry, 2015, 290, 5621-5634.	1.6	23
24	Functional reconstitution of glycinergic synapses incorporating defined glycine receptor subunit combinations. Neuropharmacology, 2015, 89, 391-397.	2.0	24
25	GABAA Receptor $\hat{I}\pm$ and \hat{I}^3 Subunits Shape Synaptic Currents via Different Mechanisms. Journal of Biological Chemistry, 2014, 289, 5399-5411.	1.6	79
26	An outline of desensitization in pentameric ligand-gated ion channel receptors. Cellular and Molecular Life Sciences, 2013, 70, 1241-1253.	2.4	29
27	Novel missense mutations in the glycine receptor \hat{l}^2 subunit gene (GLRB) in startle disease. Neurobiology of Disease, 2013, 52, 137-149.	2.1	54
28	New Hyperekplexia Mutations Provide Insight into Glycine Receptor Assembly, Trafficking, and Activation Mechanisms. Journal of Biological Chemistry, 2013, 288, 33745-33759.	1.6	35
29	The activation mechanism of $\hat{l}\pm1\hat{l}^22\hat{l}^32S$ and $\hat{l}\pm3\hat{l}^23\hat{l}^32S$ GABAA receptors. Journal of General Physiology, 2010, 13 59-75.	85 _{0.9}	36
30	Agonist-dependent Single Channel Current and Gating in $\hat{l}\pm4\hat{l}^22\hat{l}$ and $\hat{l}\pm1\hat{l}^22\hat{l}^32S$ GABAA Receptors. Journal of General Physiology, 2008, 131, 163-181.	0.9	26
31	Taurine Is a Potent Activator of Extrasynaptic GABA _A Receptors in the Thalamus. Journal of Neuroscience, 2008, 28, 106-115.	1.7	143
32	The pre-M1 segment of the $\hat{l}\pm 1$ subunit is a transduction element in the activation of the GABAAreceptor. Journal of Physiology, 2006, 575, 11-22.	1.3	30
33	Identification of Molluscan Nicotinic Acetylcholine Receptor (nAChR) Subunits Involved in Formation of Cation- and Anion-Selective nAChRs. Journal of Neuroscience, 2005, 25, 10617-10626.	1.7	63
34	Ligand-gated ion channels: mechanisms underlying ion selectivity. Progress in Biophysics and Molecular Biology, 2004, 86, 161-204.	1.4	175
35	The contribution of proline 250 (P- $2\hat{a}\in^2$) to pore diameter and ion selectivity in the human glycine receptor channel. Neuroscience Letters, 2003, 351, 196-200.	1.0	30
36	Single Channel Analysis of Conductance and Rectification in Cation-selective, Mutant Glycine Receptor Channels. Journal of General Physiology, 2002, 119, 411-425.	0.9	44

#	Article	IF	CITATIONS
37	Cation-selective Mutations in the M2 Domain of the Inhibitory Glycine Receptor Channel Reveal Determinants of Ion-Charge Selectivity. Journal of General Physiology, 2002, 119, 393-410.	0.9	89
38	M2 Pore Mutations Convert the Glycine Receptor Channel from Being Anion- to Cation-Selective. Biophysical Journal, 2000, 79, 247-259.	0.2	112
39	Measurement of the limiting equivalent conductivities and mobilities of the most prevalent ionic species of EGTA (EGTA2â^' and EGTA3â^') for use in electrophysiological experiments. Journal of Neuroscience Methods, 1999, 89, 41-47.	1.3	5