
Angelo Keramidas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8543755/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Potent neuroprotection after stroke afforded by a double-knot spider-venom peptide that inhibits acid-sensing ion channel 1a. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3750-3755.	3.3	180
2	Ligand-gated ion channels: mechanisms underlying ion selectivity. Progress in Biophysics and Molecular Biology, 2004, 86, 161-204.	1.4	175
3	Taurine Is a Potent Activator of Extrasynaptic GABA _A Receptors in the Thalamus. Journal of Neuroscience, 2008, 28, 106-115.	1.7	143
4	M2 Pore Mutations Convert the Glycine Receptor Channel from Being Anion- to Cation-Selective. Biophysical Journal, 2000, 79, 247-259.	0.2	112
5	Cation-selective Mutations in the M2 Domain of the Inhibitory Glycine Receptor Channel Reveal Determinants of Ion-Charge Selectivity. Journal of General Physiology, 2002, 119, 393-410.	0.9	89
6	GABAA Receptor Î \pm and Î 3 Subunits Shape Synaptic Currents via Different Mechanisms. Journal of Biological Chemistry, 2014, 289, 5399-5411.	1.6	79
7	Multiple sodium channel isoforms mediate the pathological effects of Pacific ciguatoxin-1. Scientific Reports, 2017, 7, 42810.	1.6	67
8	Identification of Molluscan Nicotinic Acetylcholine Receptor (nAChR) Subunits Involved in Formation of Cation- and Anion-Selective nAChRs. Journal of Neuroscience, 2005, 25, 10617-10626.	1.7	63
9	Novel missense mutations in the glycine receptor β subunit gene (GLRB) in startle disease. Neurobiology of Disease, 2013, 52, 137-149.	2.1	54
10	Single Channel Analysis of Conductance and Rectification in Cation-selective, Mutant Glycine Receptor Channels. Journal of General Physiology, 2002, 119, 411-425.	0.9	44
11	The activation mechanism of α1β2γ2S and α3β3γ2S GABAA receptors. Journal of General Physiology, 2010, 13 59-75.	5 _{0.9}	36
12	New Hyperekplexia Mutations Provide Insight into Glycine Receptor Assembly, Trafficking, and Activation Mechanisms. Journal of Biological Chemistry, 2013, 288, 33745-33759.	1.6	35
13	The contribution of proline 250 (P-2′) to pore diameter and ion selectivity in the human glycine receptor channel. Neuroscience Letters, 2003, 351, 196-200.	1.0	30
14	The pre-M1 segment of the $\hat{l}\pm 1$ subunit is a transduction element in the activation of the GABAAreceptor. Journal of Physiology, 2006, 575, 11-22.	1.3	30
15	An outline of desensitization in pentameric ligand-gated ion channel receptors. Cellular and Molecular Life Sciences, 2013, 70, 1241-1253.	2.4	29
16	Structure-Function Analysis of the GlyR α2 Subunit Autism Mutation p.R323L Reveals a Gain-of-Function. Frontiers in Molecular Neuroscience, 2017, 10, 158.	1.4	28
17	Effects of glutamate and ivermectin on single glutamate-gated chloride channels of the parasitic nematode H. contortus. PLoS Pathogens, 2017, 13, e1006663.	2.1	27
18	Agonist-dependent Single Channel Current and Gating in α4β2δ and α1β2γ2S GABAA Receptors. Journal of General Physiology, 2008, 131, 163-181.	0.9	26

ANGELO KERAMIDAS

#	Article	IF	CITATIONS
19	Zolpidem and eszopiclone prime α1β2γ2 <scp>GABA_A</scp> receptors for longer duration of activity. British Journal of Pharmacology, 2015, 172, 3522-3536.	2.7	26
20	Functional reconstitution of glycinergic synapses incorporating defined glycine receptor subunit combinations. Neuropharmacology, 2015, 89, 391-397.	2.0	24
21	Correlating Structural and Energetic Changes in Glycine Receptor Activation. Journal of Biological Chemistry, 2015, 290, 5621-5634.	1.6	23
22	GluClR-mediated inhibitory postsynaptic currents reveal targets for ivermectin and potential mechanisms of ivermectin resistance. PLoS Pathogens, 2019, 15, e1007570.	2.1	22
23	Regulation of NMDA receptor trafficking and gating by activity-dependent CaMKIIα phosphorylation of the GluN2A subunit. Cell Reports, 2021, 36, 109338.	2.9	21
24	Probing the Structural Mechanism of Partial Agonism in Glycine Receptors Using the Fluorescent Artificial Amino Acid, ANAP. ACS Chemical Biology, 2017, 12, 805-813.	1.6	20
25	Structure/Function Studies of the α4 Subunit Reveal Evolutionary Loss of a GlyR Subtype Involved in Startle and Escape Responses. Frontiers in Molecular Neuroscience, 2018, 11, 23.	1.4	16
26	Investigating the Mechanism by Which Gain-of-function Mutations to the α1 Glycine Receptor Cause Hyperekplexia. Journal of Biological Chemistry, 2016, 291, 15332-15341.	1.6	15
27	Inhibitory synapse deficits caused by familial α1 GABAA receptor mutations in epilepsy. Neurobiology of Disease, 2017, 108, 213-224.	2.1	15
28	Physiological and pharmacological properties of inhibitory postsynaptic currents mediated by α5β1γ2, α5β2γ2 and α5β3γ2 GABA A receptors. Neuropharmacology, 2017, 125, 243-253.	2.0	15
29	Proteostasis Regulators Restore Function of Epilepsy-Associated GABAA Receptors. Cell Chemical Biology, 2021, 28, 46-59.e7.	2.5	15
30	The Free Zinc Concentration in the Synaptic Cleft of Artificial Glycinergic Synapses Rises to At least 1 μM. Frontiers in Molecular Neuroscience, 2016, 9, 88.	1.4	14
31	Pharmacological activation of ATF6 remodels the proteostasis network to rescue pathogenic GABAA receptors. Cell and Bioscience, 2022, 12, 48.	2.1	14
32	The effects of insecticides on two splice variants of the glutamateâ€gated chloride channel receptor of the major malaria vector, <scp><i>Anopheles gambiae</i></scp> . British Journal of Pharmacology, 2020, 177, 175-187.	2.7	13
33	A Novel Glycine Receptor Variant with Startle Disease Affects Syndapin I and Glycinergic Inhibition. Journal of Neuroscience, 2020, 40, 4954-4969.	1.7	11
34	$\hat{I}^{3}1$ -Containing GABA-A Receptors Cluster at Synapses Where they Mediate Slower Synaptic Currents than $\hat{I}^{3}2$ -Containing GABA-A Receptors. Frontiers in Molecular Neuroscience, 2017, 10, 178.	1.4	10
35	Effects of GluN2A and GluN2B gain-of-function epilepsy mutations on synaptic currents mediated by diheteromeric and triheteromeric NMDA receptors. Neurobiology of Disease, 2020, 140, 104850.	2.1	10
36	lvermectin-Activated, Cation-Permeable Glycine Receptors for the Chemogenetic Control of Neuronal Excitation. ACS Chemical Neuroscience, 2016, 7, 1647-1657.	1.7	7

#	Article	IF	CITATIONS
37	SAHA (Vorinostat) Corrects Inhibitory Synaptic Deficits Caused by Missense Epilepsy Mutations to the GABAA Receptor 132 Subunit. Frontiers in Molecular Neuroscience, 2018, 11, 89.	1.4	7
38	A pain-causing and paralytic ant venom glycopeptide. IScience, 2021, 24, 103175.	1.9	7
39	Measurement of the limiting equivalent conductivities and mobilities of the most prevalent ionic species of EGTA (EGTA2â^' and EGTA3â^') for use in electrophysiological experiments. Journal of Neuroscience Methods, 1999, 89, 41-47.	1.3	5