
Richard T Libby

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8543126/publications.pdf Version: 2024-02-01

RICHARD TLIRRY

#	Article	IF	CITATIONS
1	Transcriptional control of retinal ganglion cell death after axonal injury. Cell Death and Disease, 2022, 13, 244.	2.7	2
2	Vascular derived endothelin receptor A controls endothelin-induced retinal ganglion cell death. Cell Death Discovery, 2022, 8, 207.	2.0	7
3	Endothelin 1-induced retinal ganglion cell death is largely mediated by JUN activation. Cell Death and Disease, 2020, 11, 811.	2.7	13
4	An ocular glymphatic clearance system removes β-amyloid from the rodent eye. Science Translational Medicine, 2020, 12, .	5.8	116
5	Salinomycin inhibits proliferative vitreoretinopathy formation in a mouse model. PLoS ONE, 2020, 15, e0243626.	1.1	5
6	Axon injury signaling and compartmentalized injury response in glaucoma. Progress in Retinal and Eye Research, 2019, 73, 100769.	7.3	63
7	DDIT3 (CHOP) contributes to retinal ganglion cell somal loss but not axonal degeneration in DBA/2J mice. Cell Death Discovery, 2019, 5, 140.	2.0	17
8	The polyether ionophore salinomycin targets multiple cellular pathways to block proliferative vitreoretinopathy pathology. PLoS ONE, 2019, 14, e0222596.	1.1	11
9	Gabor domain optical coherence microscopy combined with laser scanning confocal fluorescence microscopy. Biomedical Optics Express, 2019, 10, 6242.	1.5	5
10	Trabecular meshwork morphogenesis: A comparative analysis of wildtype and anterior segment dysgenesis mouse models. Experimental Eye Research, 2018, 170, 81-91.	1.2	3
11	Assessment of intrinsic and extrinsic signaling pathway in excitotoxic retinal ganglion cell death. Scientific Reports, 2018, 8, 4641.	1.6	19
12	Role of SARM1 and DR6 in retinal ganglion cell axonal and somal degeneration following axonal injury. Experimental Eye Research, 2018, 171, 54-61.	1.2	57
13	Ciliary margin-derived BMP4 does not have a major role in ocular development. PLoS ONE, 2018, 13, e0197048.	1.1	5
14	Mkk4 and Mkk7 are important for retinal development and axonal injury-induced retinal ganglion cell death. Cell Death and Disease, 2018, 9, 1095.	2.7	21
15	Jnk2 deficiency increases the rate of glaucomatous neurodegeneration in ocular hypertensive DBA/2J mice. Cell Death and Disease, 2018, 9, 705.	2.7	16
16	Early immune responses are independent of RGC dysfunction in glaucoma with complement component C3 being protective. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3839-E3848.	3.3	80
17	Neuroprotection for glaucoma: Requirements for clinical translation. Experimental Eye Research, 2017, 157, 34-37.	1.2	48
18	KLF9 and JNK3 Interact to Suppress Axon Regeneration in the Adult CNS. Journal of Neuroscience, 2017, 37, 9632-9644.	1.7	91

#	Article	IF	CITATIONS
19	JUN is important for ocular hypertension-induced retinal ganglion cell degeneration. Cell Death and Disease, 2017, 8, e2945-e2945.	2.7	44
20	Together JUN and DDIT3 (CHOP) control retinal ganglion cell death after axonal injury. Molecular Neurodegeneration, 2017, 12, 71.	4.4	50
21	G-Protein-Coupled Receptor-2-Interacting Protein-1 Controls Stalk Cell Fate by Inhibiting Delta-like 4-Notch1 Signaling. Cell Reports, 2016, 17, 2532-2541.	2.9	17
22	Quantitative measurement of retinal ganglion cell populations via histology-based random forest classification. Experimental Eye Research, 2016, 146, 370-385.	1.2	23
23	Novel axon projection after stress and degeneration in the Dscam mutant retina. Molecular and Cellular Neurosciences, 2016, 71, 1-12.	1.0	5
24	Col4a1 mutations cause progressive retinal neovascular defects and retinopathy. Scientific Reports, 2016, 6, 18602.	1.6	38
25	Strain-Dependent Anterior Segment Dysgenesis and Progression to Glaucoma in <i>Col4a1</i> Mutant Mice. , 2015, 56, 6823.		17
26	Using genetic mouse models to gain insight into glaucoma: Past results and future possibilities. Experimental Eye Research, 2015, 141, 42-56.	1.2	69
27	DBA/2J Mice Are Susceptible to Diabetic Nephropathy and Diabetic Exacerbation of IOP Elevation. PLoS ONE, 2014, 9, e107291.	1.1	19
28	Tumor necrosis factor alpha has an early protective effect on retinal ganglion cells after optic nerve crush. Journal of Neuroinflammation, 2014, 11, 194.	3.1	49
29	Phospholipid flippase ATP8A2 is required for normal visual and auditory function and photoreceptor and spiral ganglion cell survival. Journal of Cell Science, 2014, 127, 1138-49.	1.2	47
30	Focal damage to macaque photoreceptors produces persistent visual loss. Experimental Eye Research, 2014, 119, 88-96.	1.2	17
31	DLK-dependent signaling is important for somal but not axonal degeneration of retinal ganglion cells following axonal injury. Neurobiology of Disease, 2014, 69, 108-116.	2.1	77
32	Pou4f1 and Pou4f2 Are Dispensable for the Long-Term Survival of Adult Retinal Ganglion Cells in Mice. PLoS ONE, 2014, 9, e94173.	1.1	19
33	Intrinsic axonal degeneration pathways are critical for glaucomatous damage. Experimental Neurology, 2013, 246, 54-61.	2.0	86
34	JUN regulates early transcriptional responses to axonal injury in retinal ganglion cells. Experimental Eye Research, 2013, 112, 106-117.	1.2	76
35	Deficiency in Bim, Bid and Bbc3 (Puma) do not prevent axonal injury induced death. Cell Death and Differentiation, 2013, 20, 182-182.	5.0	12
36	Transcription Factors SOX4 and SOX11 Function Redundantly to Regulate the Development of Mouse Retinal Ganglion Cells. Journal of Biological Chemistry, 2013, 288, 18429-18438.	1.6	114

#	Article	IF	CITATIONS
37	Notch2 regulates BMP signaling and epithelial morphogenesis in the ciliary body of the mouse eye. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8966-8971.	3.3	36
38	Adding Metabolomics to the Toolbox for Studying Retinal Disease. , 2013, 54, 4260.		1
39	Mutations in a P-Type ATPase Gene Cause Axonal Degeneration. PLoS Genetics, 2012, 8, e1002853.	1.5	81
40	Adaptive optics retinal imaging in the living mouse eye. Biomedical Optics Express, 2012, 3, 715.	1.5	139
41	The Bcl-2 family member BIM has multiple glaucoma-relevant functions in DBA/2J mice. Scientific Reports, 2012, 2, 530.	1.6	37
42	BCL2L1 (BCL-X) promotes survival of adult and developing retinal ganglion cells. Molecular and Cellular Neurosciences, 2012, 51, 53-59.	1.0	28
43	JNK2 and JNK3 are major regulators of axonal injury-induced retinal ganglion cell death. Neurobiology of Disease, 2012, 46, 393-401.	2.1	127
44	Radiation treatment inhibits monocyte entry into the optic nerve head and prevents neuronal damage in a mouse model of glaucoma. Journal of Clinical Investigation, 2012, 122, 1246-1261.	3.9	192
45	Optical properties of the mouse eye. Biomedical Optics Express, 2011, 2, 717.	1.5	100
46	BBC3 (PUMA) regulates developmental apoptosis but not axonal injury induced death in the retina. Molecular Neurodegeneration, 2011, 6, 50.	4.4	44
47	Datgan, a reusable software system for facile interrogation and visualization of complex transcription profiling data. BMC Genomics, 2011, 12, 429.	1.2	46
48	Ocular Fibroblast Diversity: Implications for Inflammation and Ocular Wound Healing. , 2011, 52, 4859.		44
49	The Usher 1B protein, MYO7A, is required for normal localization and function of the visual retinoid cycle enzyme, RPE65. Human Molecular Genetics, 2011, 20, 2560-2570.	1.4	56
50	Intravitreal Injection of AAV2 Transduces Macaque Inner Retina. , 2011, 52, 2775.		177
51	Molecular clustering identifies complement and endothelin induction as early events in a mouse model of glaucoma. Journal of Clinical Investigation, 2011, 121, 1429-1444.	3.9	388
52	MATH5 controls the acquisition of multiple retinal cell fates. Molecular Brain, 2010, 3, 36.	1.3	72
53	Endoplasmic Reticulum Stress as a Primary Pathogenic Mechanism Leading to Age-Related Macular Degeneration. Advances in Experimental Medicine and Biology, 2010, 664, 403-409.	0.8	34
54	Molecular regulation of cigarette smoke induced-oxidative stress in human retinal pigment epithelial cells: implications for age-related macular degeneration. American Journal of Physiology - Cell Physiology, 2009, 297, C1200-C1210.	2.1	114

#	Article	IF	CITATIONS
55	BARHL2 Differentially Regulates the Development of Retinal Amacrine and Ganglion Neurons. Journal of Neuroscience, 2009, 29, 3992-4003.	1.7	66
56	In-vivo imaging of retinal nerve fiber layer vasculature: imaging - histology comparison. BMC Ophthalmology, 2009, 9, 9.	0.6	76
57	Mouse genetic models: an ideal system for understanding glaucomatous neurodegeneration and neuroprotection. Progress in Brain Research, 2008, 173, 303-321.	0.9	43
58	Axons of retinal ganglion cells are insulted in the optic nerve early in DBA/2J glaucoma. Journal of Cell Biology, 2007, 179, 1523-1537.	2.3	523
59	Absence of glaucoma in DBA/2J mice homozygous for wild-type versions of Gpnmb and Tyrp1. BMC Genetics, 2007, 8, 45.	2.7	117
60	Inducible nitric oxide synthase, Nos2, does not mediate optic neuropathy and retinopathy in the DBA/2J glaucoma model. BMC Neuroscience, 2007, 8, 108.	0.8	35
61	Genetic context determines susceptibility to intraocular pressure elevation in a mouse pigmentary glaucoma. BMC Biology, 2006, 4, 20.	1.7	130
62	Glaucoma: Thinking in new ways—a rÃ1e for autonomous axonal self-destruction and other compartmentalised processes?. Progress in Retinal and Eye Research, 2005, 24, 639-662.	7.3	225
63	Susceptibility to Neurodegeneration in a Glaucoma Is Modified by Bax Gene Dosage. PLoS Genetics, 2005, 1, e4.	1.5	348
64	Retinal ganglion cell degeneration is topological but not cell type specific in DBA/2J mice. Journal of Cell Biology, 2005, 171, 313-325.	2.3	342
65	Inherited glaucoma in DBA/2J mice: Pertinent disease features for studying the neurodegeneration. Visual Neuroscience, 2005, 22, 637-648.	0.5	355
66	High-dose radiation with bone marrow transfer prevents neurodegeneration in an inherited glaucoma. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4566-4571.	3.3	126
67	COMPLEX GENETICS OF GLAUCOMA SUSCEPTIBILITY. Annual Review of Genomics and Human Genetics, 2005, 6, 15-44.	2.5	159
68	Myosin VI is required for normal retinal function. Experimental Eye Research, 2005, 81, 116-120.	1.2	16
69	Myosin Va is required for normal photoreceptor synaptic activity. Journal of Cell Science, 2004, 117, 4509-4515.	1.2	55
70	Role of myosin VIIa and Rab27a in the motility and localization of RPE melanosomes. Journal of Cell Science, 2004, 117, 6473-6483.	1.2	137
71	Loss of myosin VI reduces secretion and the size of the Golgi in fibroblasts from Snell's waltzer mice. EMBO Journal, 2003, 22, 569-579.	3.5	127
72	Modification of Ocular Defects in Mouse Developmental Glaucoma Models by Tyrosinase. Science, 2003, 299, 1578-1581.	6.0	216

#	Article	IF	CITATIONS
73	Cdh23 mutations in the mouse are associated with retinal dysfunction but not retinal degeneration. Experimental Eye Research, 2003, 77, 731-739.	1.2	40
74	Reduced climbing and increased slipping adaptation in cochlear hair cells of mice with Myo7a mutations. Nature Neuroscience, 2002, 5, 41-47.	7.1	239
75	Laminin Expression in Adult and Developing Retinae: Evidence of Two Novel CNS Laminins. Journal of Neuroscience, 2000, 20, 6517-6528.	1.7	247
76	Roles of the Extracellular Matrix in Retinal Development and Maintenance. Results and Problems in Cell Differentiation, 2000, 31, 115-140.	0.2	15
77	The roles of unconventional myosins in hearing and deafness. Essays in Biochemistry, 2000, 35, 159-174.	2.1	30
78	Disruption of Laminin β2 Chain Production Causes Alterations in Morphology and Function in the CNS. Journal of Neuroscience, 1999, 19, 9399-9411.	1.7	148
79	Identification of the cellular source of laminin ?2 in adult and developing vertebrate retinae. , 1997, 389, 655-667.		33