Yongming Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8542533/publications.pdf

Version: 2024-02-01

271 papers 9,960 citations

51 h-index 83 g-index

280 all docs 280 docs citations

280 times ranked 11729 citing authors

#	Article	IF	CITATIONS
1	3D-printed dermis-specific extracellular matrix mitigates scar contraction via inducing early angiogenesis and macrophage M2 polarization. Bioactive Materials, 2022, 10, 236-246.	8.6	25
2	The protein corona modulates the inflammation inhibition by cationic nanoparticles via cell-free DNA scavenging. Bioactive Materials, 2022, 13, 249-259.	8.6	11
3	Hydrophilic and degradable polylactones via copolymerization of ε-caprolactone and oxo-crown ether catalyzed by a bifunctional organic base. Reactive and Functional Polymers, 2022, 170, 105123.	2.0	1
4	Recent Progress in Utilizing Upconversion Nanoparticles with Switchable Emission for Programmed Therapy. Advanced Therapeutics, 2022, 5, 2100172.	1.6	3
5	Selfâ€Assembly of Upconversion Nanoparticles Based Materials and Their Emerging Applications. Small, 2022, 18, e2103241.	5.2	17
6	Concurrent and Mechanochemical Activation of Two Distinct and Latent Fluorophores via Retro-Dielsâ€"Alder Reaction of an Anthraceneâ€"Aminomaleimide Adduct. ACS Macro Letters, 2022, 11, 310-316.	2.3	8
7	Self-degradable poly(\hat{l}^2 -amino ester)s promote endosomal escape of antigen and agonist. Journal of Controlled Release, 2022, 345, 91-100.	4.8	15
8	Fabrication of subunit nanovaccines by physical interaction. Science China Technological Sciences, 2022, 65, 989-999.	2.0	7
9	Unimolecular Nano-contrast Agent with Ultrahigh Relaxivity and Very Long Retention for Magnetic Resonance Lymphography. Nano Letters, 2022, 22, 4090-4096.	4.5	18
10	Direct 3D printing of thermosensitive AOP127-oxidized dextran hydrogel with dual dynamic crosslinking and high toughness. Carbohydrate Polymers, 2022, 291, 119616.	5.1	18
11	Nanoparticulate DNA scavenger loading methotrexate targets articular inflammation to enhance rheumatoid arthritis treatment. Biomaterials, 2022, 286, 121594.	5.7	12
12	Catalytically Controlled Ring-Opening Polymerization of 2-Oxo-15-crown-5 for Degradable and Recyclable PEG-Like Polyesters. ACS Macro Letters, 2022, 11, 792-798.	2.3	10
13	Orally administrable polyphenol-based nanoparticles achieve anti-inflammation and antitumor treatment of colon diseases. Biomaterials Science, 2022, 10, 4156-4169.	2.6	6
14	Nucleic Acid-Scavenging Hydrogels Accelerate Diabetic Wound Healing. Biomacromolecules, 2022, 23, 3396-3406.	2.6	11
15	Conjugated microporous polymers for near-infrared photothermal control of shape change. Science China Materials, 2021, 64, 430-439.	3.5	7
16	Synthesis of fully degradable cationic polymers with various topological structures <i>via</i> postpolymerization modification by using thio-bromo "click―reaction. Polymer Chemistry, 2021, 12, 2592-2597.	1.9	7
17	Non-invasive delivery of levodopa-loaded nanoparticles to the brain via lymphatic vasculature to enhance treatment of Parkinson's disease. Nano Research, 2021, 14, 2749-2761.	5.8	10
18	Engineered therapeutic nanovaccine against chronic hepatitis B virus infection. Biomaterials, 2021, 269, 120674.	5.7	23

#	Article	IF	Citations
19	Precision Wormlike Nanoadjuvant Governs Potency of Vaccination. Nano Letters, 2021, 21, 7236-7243.	4.5	9
20	CircMMP1 promotes colorectal cancer growth and metastasis by sponging miR-1238 and upregulating MMP family expression. Annals of Translational Medicine, 2021, 9, 1341-1341.	0.7	8
21	Surface Modification of Nanofibers by Physical Adsorption of Fiber-Homologous Amphiphilic Copolymers and Nanofiber-Reinforced Hydrogels with Excellent Tissue Adhesion. ACS Biomaterials Science and Engineering, 2021, 7, 4828-4837.	2.6	8
22	Topical cationic hairy particles targeting cell free DNA in dermis enhance treatment of psoriasis. Biomaterials, 2021, 276, 121027.	5.7	15
23	High-Yield Synthesis of Molecular Bottlebrushes via PISA-Assisted Grafting-from Strategy. ACS Macro Letters, 2021, 10, 1260-1265.	2.3	18
24	Efficient Metal-Free Norbornadiene–Maleimide Click Reaction for the Formation of Molecular Bottlebrushes. Macromolecules, 2021, 54, 10031-10039.	2.2	12
25	A Simple Mechanochromic Mechanophore Based on Aminothiomaleimide. ACS Macro Letters, 2021, 10, 1423-1428.	2.3	8
26	Antioxidant Enzymes Sequestered within Lipid–Polymer Hybrid Nanoparticles for the Local Treatment of Inflammatory Bowel Disease. ACS Applied Materials & Disease. Replied Materials & Disease. ACS Applied Materials & Disease. Replied Materials & D	4.0	22
27	Emerging Micro/Nanomotorâ€Based Platforms for Biomedical Therapy. Advanced Intelligent Systems, 2020, 2, 1900081.	3.3	12
28	Preparation of Nitrogen-Doped Mesoporous Carbon for the Efficient Removal of Bilirubin in Hemoperfusion. ACS Applied Bio Materials, 2020, 3, 1036-1043.	2.3	23
29	A polyphenol-metal nanoparticle platform for tunable release of liraglutide to improve blood glycemic control and reduce cardiovascular complications in a mouse model of type II diabetes. Journal of Controlled Release, 2020, 318, 86-97.	4.8	33
30	Augmenting Therapeutic Potential of Polyphenols by Hydrogen-Bonding Complexation for the Treatment of Acute Lung Inflammation. ACS Applied Bio Materials, 2020, 3, 5202-5212.	2.3	10
31	Topical nanoparticles interfering with the DNA-LL37 complex to alleviate psoriatic inflammation in mice and monkeys. Science Advances, 2020, 6, eabb5274.	4.7	45
32	Polymerization mechanism of 4-APN and a new catalyst for phthalonitrile resin polymerization. RSC Advances, 2020, 10, 39187-39194.	1.7	8
33	The post-modification of polyolefins with emerging synthetic methods. Polymer Chemistry, 2020, 11 , $6862-6872$.	1.9	51
34	Combinatorial synthesis of redox-responsive cationic polypeptoids for intracellular protein delivery application. Science China Chemistry, 2020, 63, 1619-1625.	4.2	10
35	Subunit Nanovaccine with Potent Cellular and Mucosal Immunity for COVID-19. ACS Applied Bio Materials, 2020, 3, 5633-5638.	2.3	26
36	Cationic Block Copolymer Nanoparticles with Tunable DNA Affinity for Treating Rheumatoid Arthritis. Advanced Functional Materials, 2020, 30, 2000391.	7.8	29

#	Article	IF	Citations
37	Dual dynamically crosslinked thermosensitive hydrogel with self-fixing as a postoperative anti-adhesion barrier. Acta Biomaterialia, 2020, 110, 119-128.	4.1	57
38	Therapeutic nanovaccines sensitize EBV-associated tumors to checkpoint blockade therapy. Biomaterials, 2020, 255, 120158.	5.7	31
39	Therapeutic Delivery to the Brain via the Lymphatic Vasculature. Nano Letters, 2020, 20, 5415-5420.	4.5	34
40	Identification of Specific Joint-Inflammatogenic Cell-Free DNA Molecules From Synovial Fluids of Patients With Rheumatoid Arthritis. Frontiers in Immunology, 2020, 11, 662.	2.2	24
41	Oneâ€Pot Synthesis of PEGylated Lipoplexes to Facilitate Mucosal Permeation for Oral Insulin Gene Delivery. Advanced Therapeutics, 2020, 3, 2000016.	1.6	10
42	Flash Fabrication of Orally Targeted Nanocomplexes for Improved Transport of Salmon Calcitonin across the Intestine. Molecular Pharmaceutics, 2020, 17, 757-768.	2.3	17
43	Charge Regulation of Self-Assembled Tubules by Protonation for Efficiently Selective and Controlled Drug Delivery. IScience, 2019, 19, 224-231.	1.9	10
44	The synthesis and properties of a new class of π-expanded diketopyrrolopyrrole analogs and conjugated polymers. Organic Chemistry Frontiers, 2019, 6, 2974-2980.	2.3	13
45	Surface Coating Approach to Overcome Mucosal Entrapment of DNA Nanoparticles for Oral Gene Delivery of Glucagon-like Peptide 1. ACS Applied Materials & Samp; Interfaces, 2019, 11, 29593-29603.	4.0	28
46	Frontispiece: Fabrication of Selfâ€Propelled Micro―and Nanomotors Based on Janus Structures. Chemistry - A European Journal, 2019, 25, .	1.7	27
47	Tadpole-like Unimolecular Nanomotor with Sub-100 nm Size Swims in a Tumor Microenvironment Model. Nano Letters, 2019, 19, 8749-8757.	4.5	37
48	Sequential Administration of Nanoadjuvant and Nanoantigen Matters in Host Immunity. ACS Applied Bio Materials, 2019, 2, 4708-4713.	2.3	0
49	A Biocompatible Multilayer Film from an Asymmetric Picoliniumâ€Containing Polycation with Fast Visibleâ€Light/NIRâ€Degradability. Macromolecular Rapid Communications, 2019, 40, e1900441.	2.0	0
50	Evolution of diverse higher-order membrane structures of block copolymer vesicles. Polymer Chemistry, 2019, 10, 3020-3029.	1.9	21
51	Regioselective post-functionalization of isotactic polypropylene by amination in the presence of <i>N</i> -hydroxyphthalimide. Polymer Chemistry, 2019, 10, 619-626.	1.9	22
52	Molecular Bottlebrushes Featuring Brush-on-Brush Architecture. ACS Macro Letters, 2019, 8, 749-753.	2.3	28
53	A better prognostic stratification for the 8th edition of the AJCC staging system of gastric cancer by incorporating pT4aNOM0 into stage IIIA. Surgical Oncology, 2019, 29, 90-96.	0.8	2
54	A direct functionalization of polyolefins for blend compatibilization by an insertion of 1,1-bis(phenylsulfonyl)ethylene (BPSE). Polymer Chemistry, 2019, 10, 3325-3333.	1.9	14

#	Article	IF	Citations
55	Microporous polyimides containing bulky tetra-o-isopropyl and naphthalene groups for gas separation membranes. Journal of Membrane Science, 2019, 585, 282-288.	4.1	30
56	Fingerprintable Hydrogel from Dual Reversible Cross-Linking Networks with Different Relaxation Times. ACS Applied Materials & Samp; Interfaces, 2019, 11, 17925-17930.	4.0	18
57	The Diagnostic and Prognostic Value of Digital Rectal Examination in Gastric Cancer Patients with Peritoneal Metastasis. Journal of Cancer, 2019, 10, 1489-1495.	1.2	8
58	Scalable fabrication of metal–phenolic nanoparticles by coordination-driven flash nanocomplexation for cancer theranostics. Nanoscale, 2019, 11, 9410-9421.	2.8	33
59	Sustained release of exendin-4 from tannic acid/Fe (III) nanoparticles prolongs blood glycemic control in a mouse model of type II diabetes. Journal of Controlled Release, 2019, 301, 119-128.	4.8	65
60	Fabrication of Selfâ€Propelled Micro―and Nanomotors Based on Janus Structures. Chemistry - A European Journal, 2019, 25, 8663-8680.	1.7	37
61	Tuned Cationic Dendronized Polymer: Molecular Scavenger for Rheumatoid Arthritis Treatment. Angewandte Chemie - International Edition, 2019, 58, 4254-4258.	7.2	54
62	Tuned Cationic Dendronized Polymer: Molecular Scavenger for Rheumatoid Arthritis Treatment. Angewandte Chemie, 2019, 131, 4298-4302.	1.6	3
63	The design of triple shape memory polymers with stable yet tunable temporary shapes by introducing photo-responsive units into a crystalline domain. Polymer Chemistry, 2019, 10, 1537-1543.	1.9	9
64	Intact starch granules for pickering emulsion: Exploring mechanism of cleaning with washing rice water and floury soup. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 561, 155-164.	2.3	6
65	Scalable Production of Therapeutic Protein Nanoparticles Using Flash Nanoprecipitation. Advanced Healthcare Materials, 2019, 8, e1801010.	3.9	27
66	Scalable Manufacturing of Enteric Encapsulation Systems for Site-Specific Oral Insulin Delivery. Biomacromolecules, 2019, 20, 528-538.	2.6	26
67	Fabrication of 2D surface-functional polymer platelets via crystallization-driven self-assembly of poly ($\hat{l}\mu$ -caprolactone)-contained block copolymers. Polymer, 2019, 160, 196-203.	1.8	29
68	Potency of a Scalable Nanoparticulate Subunit Vaccine. Nano Letters, 2018, 18, 3007-3016.	4.5	57
69	A Cascadeâ€Targeting Nanocapsule for Enhanced Photothermal Tumor Therapy with Aid of Autophagy Inhibition. Advanced Healthcare Materials, 2018, 7, e1800121.	3.9	27
70	Mild halogenation of polyolefins using an $\langle i \rangle N \langle i \rangle$ -haloamide reagent. Polymer Chemistry, 2018, 9, 1309-1317.	1.9	25
71	Scalable production of core–shell nanoparticles by flash nanocomplexation to enhance mucosal transport for oral delivery of insulin. Nanoscale, 2018, 10, 3307-3319.	2.8	62
72	Nanomotorâ€Based Strategy for Enhanced Penetration across Vasculature Model. Advanced Functional Materials, 2018, 28, 1706117.	7.8	59

#	Article	IF	CITATIONS
73	Well-Defined Poly(\hat{l} ±-amino- \hat{l} -valerolactone) via Living Ring-Opening Polymerization. Macromolecules, 2018, 51, 2526-2532.	2.2	24
74	Molecular bottlebrush as a unimolecular vehicle with tunable shape for photothermal cancer therapy. Biomaterials, 2018, 178, 620-629.	5.7	57
75	Uniâ€molecular nanoparticles of poly(2â€oxazoline) showing tunable thermoresponsive behaviors. Journal of Polymer Science Part A, 2018, 56, 174-183.	2.5	8
76	Designing a main-chain visible-light-labile picolinium-caged polymer and its biological applications. Polymer Chemistry, 2018, 9, 138-144.	1.9	3
77	Hydrogen-Bonded Tannic Acid-Based Anticancer Nanoparticle for Enhancement of Oral Chemotherapy. ACS Applied Materials & Dr. (1974) ACS Applied Materials & D	4.0	85
78	Size-controlled lipid nanoparticle production using turbulent mixing to enhance oral DNA delivery. Acta Biomaterialia, 2018, 81, 195-207.	4.1	42
79	Cationic nanoparticle as an inhibitor of cell-free DNA-induced inflammation. Nature Communications, 2018, 9, 4291.	5.8	129
80	Biobased transparent polyimides with excellent solubility and mechanical properties using myo-inositol derived diamines. Reactive and Functional Polymers, 2018, 128, 91-96.	2.0	13
81	Preoperative controlling nutritional status (CONUT) score as a predictor of long-term outcome after curative resection followed by adjuvant chemotherapy in stage II-III gastric Cancer. BMC Cancer, 2018, 18, 699.	1.1	58
82	Biocompatible surface modification of nano-scale zeolitic imidazolate frameworks for enhanced drug delivery. RSC Advances, 2018, 8, 23623-23628.	1.7	32
83	Uniform Core–Shell Nanoparticles with Thiolated Hyaluronic Acid Coating to Enhance Oral Delivery of Insulin. Advanced Healthcare Materials, 2018, 7, e1800285.	3.9	90
84	Hydrogel Cross-Linked with Dynamic Covalent Bonding and Micellization for Promoting Burn Wound Healing. ACS Applied Materials & Samp; Interfaces, 2018, 10, 25194-25202.	4.0	173
85	Lipid Stabilized Solid Drug Nanoparticles for Targeted Chemotherapy. ACS Applied Materials & Samp; Interfaces, 2018, 10, 24969-24974.	4.0	16
86	Shell of amphiphilic molecular bottlebrush matters as unimolecular micelle. Polymer, 2018, 149, 316-324.	1.8	20
87	Combination of CRP and NLR: a better predictor of postoperative survival in patients with gastric cancer. Cancer Management and Research, 2018, Volume 10, 315-321.	0.9	41
88	A stepwise crosslinking strategy toward lamellar carbon frameworks with covalently connected alternate layers of porous carbon nanosheets and porous carbon spacers. Chemical Communications, 2018, 54, 10332-10335.	2.2	3
89	Direct Amination of Polyethylene by Metal-Free Reaction. Macromolecules, 2017, 50, 3510-3515.	2.2	44
90	A self-healing PDMS elastomer based on acylhydrazone groups and the role of hydrogen bonds. Polymer, 2017, 120, 189-196.	1.8	99

#	Article	IF	Citations
91	Scalable fabrication of size-controlled chitosan nanoparticles for oral delivery of insulin. Biomaterials, 2017, 130, 28-41.	5.7	200
92	Facile and efficient bromination of hydroxyl-containing polymers to synthesize well-defined brominated polymers. Polymer Chemistry, 2017, 8, 2189-2196.	1.9	13
93	A UVâ€Cleavable Bottlebrush Polymer with <i>>o</i> >â€Nitrobenzylâ€Linked Side Chains. Macromolecular Rapid Communications, 2017, 38, 1700007.	2.0	9
94	Polythioamides of High Refractive Index by Direct Polymerization of Aliphatic Primary Diamines in the Presence of Elemental Sulfur. Macromolecules, 2017, 50, 8505-8511.	2.2	66
95	High performance polyimides with good solubility and optical transparency formed by the introduction of alkyl and naphthalene groups into diamine monomers. RSC Advances, 2017, 7, 40996-41003.	1.7	40
96	Scarless Wound Closure by a Mussel-Inspired Poly(amidoamine) Tissue Adhesive with Tunable Degradability. ACS Omega, 2017, 2, 6053-6062.	1.6	19
97	Synthesis of novel hierarchical porous polymers with a nanowire-interconnected network structure from core-shell polymer nanoobjects. Science China Chemistry, 2017, 60, 1084-1089.	4.2	2
98	A novel reactive oxygen species-responsive polymeric micelle for near-infrared light-triggered drug release in cancer cells. Journal of Controlled Release, 2017, 259, e182.	4.8	2
99	Ultrastretchable, Self-Healable Hydrogels Based on Dynamic Covalent Bonding and Triblock Copolymer Micellization. ACS Macro Letters, 2017, 6, 881-886.	2.3	149
100	Synthesis and properties of reprocessable sulfonated polyimides cross-linked via acid stimulation for use as proton exchange membranes. Journal of Power Sources, 2017, 337, 110-117.	4.0	49
101	Consistency mapping of 16 lymph node stations in gastric cancer by CT-based vessel-guided delineation of 255 patients. Oncotarget, 2017, 8, 41465-41473.	0.8	5
102	Prognostic nutritional index is an independent prognostic factor for gastric cancer patients with peritoneal dissemination. Chinese Journal of Cancer Research: Official Journal of China Anti-Cancer Association, Beijing Institute for Cancer Research, 2016, 28, 570-578.	0.7	15
103	Microphase Separation within Disk Shaped Aggregates of Triblock Bottlebrushes. Macromolecular Rapid Communications, 2016, 37, 605-609.	2.0	14
104	How Big Is Big Enough? Effect of Length and Shape of Side Chains on the Single-Chain Enthalpic Elasticity of a Macromolecule. Macromolecules, 2016, 49, 3559-3565.	2.2	35
105	Microphase separation of poly(tert-butyl methacrylate)-block-polystyrene diblock copolymers to form perforated lamellae. Polymer, 2016, 94, 1-7.	1.8	9
106	Visible-Light Photolabile, Charge-Convertible Poly(ionic liquid) for Light-degradable Films and Carbon-Based Electronics. ACS Applied Materials & Interfaces, 2016, 8, 23431-23436.	4.0	6
107	Efficient Metal-Free "Grafting Onto―Method for Bottlebrush Polymers by Combining RAFT and Triazolinedione–Diene Click Reaction. Macromolecules, 2016, 49, 4452-4461.	2.2	50
108	Incorporation of NO Stage with Insufficient Numbers of Lymph Nodes into N1 Stage in the Seventh Edition of the TNM Classification Improves Prediction of Prognosis in Gastric Cancer: Results of a Single-Institution Study of 1258 Chinese Patients. Annals of Surgical Oncology, 2016, 23, 142-148.	0.7	20

7

#	Article	IF	CITATIONS
109	Preoperative platelet-lymphocyte ratio is superior to neutrophil-lymphocyte ratio as a prognostic factor for soft-tissue sarcoma. BMC Cancer, 2015, 15, 648.	1.1	49
110	Kinetically Trapped Block Copolymer Nanoâ€Objects with Cylinder to Sphere Shape Transition Properties. Macromolecular Chemistry and Physics, 2015, 216, 495-503.	1,1	3
111	Different dimensional silica materials prepared using shaped block copolymer nanoobjects as catalytic templates. Journal of Materials Chemistry B, 2015, 3, 5786-5794.	2.9	17
112	Gels Based on Anion Recognition Between Triurea Receptor and Phosphate Anion. Macromolecular Rapid Communications, 2015, 36, 750-754.	2.0	8
113	MicroRNA delivery for regenerative medicine. Advanced Drug Delivery Reviews, 2015, 88, 108-122.	6.6	125
114	Clinical Significance of Preoperative Serum High Density Lipoprotein Cholesterol Levels in Soft Tissue Sarcoma. Medicine (United States), 2015, 94, e844.	0.4	9
115	Synthesis and Cellular Internalization of Spindle Hematite/Polymer Hybrid Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2015, 7, 5454-5461.	4.0	7
116	Well-defined cyclopropenone-masked dibenzocyclooctyne functionalized polymers from atom transfer radical polymerization. Polymer, 2015, 64, 202-209.	1.8	10
117	Synthesis of novel biobased polyimides derived from isomannide with good optical transparency, solubility and thermal stability. RSC Advances, 2015, 5, 67574-67582.	1.7	27
118	C(sp3)–C(sp3) coupling polymerization of alkyl dibromides for preparation of polymers with precisely located phenyl pendants. Polymer, 2015, 64, 196-201.	1.8	7
119	Special issueâ€"New application of organic reactions for controlling polymer architectures. Polymer, 2015, 64, 193-195.	1.8	2
120	Macroscopic Organohydrogel Hybrid from Rapid Adhesion between Dynamic Covalent Hydrogel and Organogel. ACS Macro Letters, 2015, 4, 467-471.	2.3	69
121	Polymer-Grafted Nanoparticles with Precisely Controlled Structures. ACS Macro Letters, 2015, 4, 1067-1071.	2.3	22
122	Bottomâ€Up Hybridization: A Strategy for the Preparation of a Thermostable Polyoxometalate–Polymer Hybrid with Hierarchical Hybrid Structures. ChemPlusChem, 2014, 79, 1455-1462.	1.3	17
123	A method for preparing water soluble cyclic polymers. Reactive and Functional Polymers, 2014, 80, 15-20.	2.0	22
124	Well-defined dibenzocyclooctyne end functionalized polymers from atom transfer radical polymerization. Polymer, 2014, 55, 1128-1135.	1.8	14
125	Cyclopolymerization of α,ï‰â€heterodifunctional monomers containing styrene and maleimide moieties. Journal of Polymer Science Part A, 2014, 52, 330-338.	2.5	8
126	Block copolymer micelles as carriers of transition metal ions Y(III) and Cu(II) and gelation thereof. Polymer, 2014, 55, 6232-6238.	1.8	5

#	Article	IF	CITATIONS
127	Strain-promoted azide-alkyne cycloaddition "click―as a conjugation tool for building topological polymers. Polymer, 2014, 55, 4812-4819.	1.8	29
128	Disk-Like Micelles with a Highly Ordered Pattern from Molecular Bottlebrushes. ACS Macro Letters, 2014, 3, 70-73.	2.3	76
129	Bamboo Leaf-Like Micro-Nano Sheets Self-Assembled by Block Copolymers as Wafers for Cells. Macromolecular Bioscience, 2014, 14, 1764-1770.	2.1	26
130	Powerful Ring-Closure Method for Preparing Varied Cyclic Polymers. Macromolecules, 2014, 47, 3775-3781.	2.2	63
131	Isomeric Dicyclic Polymers via Atom Transfer Radical Polymerization and Atom Transfer Radical Coupling Cyclization. Macromolecules, 2014, 47, 1993-1998.	2.2	26
132	Cancer Cell Uptake of Polymer Hydrogel Nanotubes. Journal of Biomedical Nanotechnology, 2014, 10, 3329-3336.	0.5	1
133	Metallo-Supramolecular Cyclic Polymers. Journal of the American Chemical Society, 2013, 135, 15994-15997.	6.6	80
134	Adsorption kinetics and stability of poly(ethylene oxide)-block-polystyrene micelles on polystyrene surface. Polymer, 2013, 54, 5779-5789.	1.8	12
135	Highly efficient synthesis of cylindrical polymer brushes with various side chains via click grafting-onto approach. Polymer, 2013, 54, 5634-5642.	1.8	55
136	Facile surface modification of PVDF microfiltration membrane by strong physical adsorption of amphiphilic copolymers. Journal of Applied Polymer Science, 2013, 130, 3112-3121.	1.3	13
137	Encapsulation properties of reverse-amphiphilic core/shell polymeric nanoobjects with different shapes. Journal of Materials Chemistry B, 2013, 1, 5694.	2.9	9
138	Modification of side chain terminals of PEGylated molecular bottle brushesâ€"A toolbar of molecular nanoobjects. Polymer, 2013, 54, 481-484.	1.8	14
139	A facile way to prepare crystalline platelets of block copolymers by crystallization-driven self-assembly. Polymer, 2013, 54, 6760-6767.	1.8	73
140	Dynamic polymers containing one acylhydrazone linkage and dynamic behavior thereof. Polymer, 2013, 54, 2647-2651.	1.8	9
141	PEGylated nanoparticles of diperylene bisimides with high efficiency of 102 generation. Dyes and Pigments, 2013, 97, 129-133.	2.0	17
142	Synthesis of Cylindrical Polymer Brushes with Umbrella-Like Side Chains via a Combination of Grafting-from and Grafting-onto Methods. Macromolecules, 2013, 46, 2391-2398.	2.2	62
143	Dibromomaleimide Derivative as an Efficient Polymer Coupling Agent for Building Topological Polymers. Macromolecular Chemistry and Physics, 2013, 214, 470-477.	1.1	16
144	Simple, Clean Preparation Method for Cross-Linked α-Cyclodextrin Nanoparticles via Inclusion Complexation. Langmuir, 2013, 29, 5939-5943.	1.6	15

#	Article	IF	Citations
145	Shaped core/shell polymer nanoobjects with high antibacterial activities via block copolymer microphase separation. Polymer, 2013, 54, 3485-3491.	1.8	40
146	Resolving the Difference in Electric Potential within a Charged Macromolecule. Macromolecules, 2013, 46, 3132-3136.	2.2	23
147	Dendronized Copolymers. , 2013, , 1-8.		0
148	Synthesis and properties of amphiphilic star block copolymers with star macroinitiators based on a one-pot approach. Polymer International, 2013, 62, 1777-1782.	1.6	4
149	Thermoresponsive Organic–Inorganic Hybrid Largeâ€Compound Vesicles. Macromolecular Rapid Communications, 2013, 34, 1169-1173.	2.0	7
150	Dumpling-Like Nanocomplexes of Foldable Janus Polymer Sheets and Spheres. ACS Macro Letters, 2012, 1, 1143-1145.	2.3	26
151	Fluorescent Polymeric Micelles with Tetraphenylethylene Moieties and Their Application for the Selective Detection of Glucose. Macromolecular Bioscience, 2012, 12, 1583-1590.	2.1	36
152	Supramolecular hydrogels as a universal scaffold for stepwise delivering Dox and Dox/cisplatin loaded block copolymer micelles. International Journal of Pharmaceutics, 2012, 437, 11-19.	2.6	52
153	Thermo-responsive organic–inorganic hybrid vesicles with tunable membrane permeability. Soft Matter, 2012, 8, 12002.	1.2	23
154	Shaped Hairy Polymer Nanoobjects. Macromolecules, 2012, 45, 2619-2631.	2.2	128
155	Rheological Images of Dynamic Covalent Polymer Networks and Mechanisms behind Mechanical and Self-Healing Properties. Macromolecules, 2012, 45, 1636-1645.	2.2	120
156	Conformational Transition of Poly(N-isopropylacrylamide) Single Chains in Its Cononsolvency Process: A Study by Fluorescence Correlation Spectroscopy and Scaling Analysis. Macromolecules, 2012, 45, 9196-9204.	2.2	51
157	Dynamic Hydrogels with an Environmental Adaptive Self-Healing Ability and Dual Responsive Sol–Gel Transitions. ACS Macro Letters, 2012, 1, 275-279.	2.3	519
158	Core extractable nanoâ€objects: Manipulating triblock copolymer micelles. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 323-327.	2.4	7
159	Synthesis and properties of novel functional polymers from tetrachlorinated perylene bisimide. Journal of Polymer Science Part A, 2012, 50, 3485-3492.	2.5	6
160	Synthesis of miktoâ€topology star polymer containing one cyclic arm. Journal of Polymer Science Part A, 2012, 50, 4239-4245.	2.5	14
161	Tubular Polymer Nanoobjects with a Crosslinked Shell and Inwardâ€Grafted Polymer Brushes. Macromolecular Materials and Engineering, 2012, 297, 639-644.	1.7	4
162	Molecular Nanoworm with PCL Core and PEO Shell as a Nonâ€spherical Carrier for Drug Delivery. Macromolecular Rapid Communications, 2012, 33, 1351-1355.	2.0	83

#	Article	IF	Citations
163	Clickable dendronized copolymers for introducing structural heterogeneity. European Polymer Journal, 2012, 48, 569-579.	2.6	9
164	Highly efficient synthesis of polymer brushes with PEO and PCL as side chains via click chemistry. Polymer, 2012, 53, 1992-2000.	1.8	58
165	A novel amphipathic block copolymer coating forming micelle-like aggregates for separation of steroids in open tubular capillary electrochromatography. Talanta, 2011, 84, 501-507.	2.9	15
166	Functionalization of shaped polymeric nanoobjects via bulk co-self-assembling gelable block copolymers with silane coupling agents. Polymer, 2011, 52, 3681-3686.	1.8	17
167	Dynamically confined crystallization in a soft lamellar space constituted by alternating polymer co-brushes. Polymer, 2011, 52, 4581-4589.	1.8	24
168	Fabrication of ceramic oxide-coated SWNT composites by sol–gel process with a polymer glue. Journal of Nanoparticle Research, 2011, 13, 3731-3740.	0.8	8
169	Pegylated single-walled carbon nanotubes with gelable block copolymers. Chinese Journal of Polymer Science (English Edition), 2011, 29, 762-771.	2.0	3
170	Synthesis and in situ core reorganization of smart polymers. Reactive and Functional Polymers, 2011, 71, 843-848.	2.0	4
171	Development of a new openâ€tubular capillary electrochromatography method for ⟨i⟩in vitro⟨/i⟩ monitoring of toxic aromatic amines distribution in rat blood. Journal of Separation Science, 2011, 34, 3538-3545.	1.3	3
172	Biamphiphilic triblock copolymer micelles as a multifunctional platform for anticancer drug delivery. Journal of Biomedical Materials Research - Part A, 2011, 96A, 330-340.	2.1	23
173	Fabrication of surfactantâ€removed polymer composites with singleâ€walled carbon nanotube networks. Journal of Applied Polymer Science, 2011, 119, 155-161.	1.3	5
174	SHAPED CORE-SHELL NANOPARTICLES PREPARED FROM SELF-ASSEMBLY OF BLOCK COPOLYMERS. Acta Polymerica Sinica, 2011, 011, 572-585.	0.0	10
175	SYNTHESIS AND SELF-ASSEMBLY OF DENDRONIZED-LINEAR AMPHIPHILIC BLOCK COPOLYMER. Acta Polymerica Sinica, 2011, 011, 494-501.	0.0	1
176	Onion-like microspheres with tricomponent from gelable triblock copolymers. Journal of Colloid and Interface Science, 2010, 346, 48-53.	5.0	19
177	Organic/inorganic nanoobjects with controlled shapes from gelable triblock copolymers. Polymer, 2010, 51, 2809-2817.	1.8	40
178	Structure and properties of polysaccharide nanocrystal-doped supramolecular hydrogels based on Cyclodextrin inclusion. Polymer, 2010, 51, 4398-4407.	1.8	140
179	Dendronized copolymers functionalized with crown ethers and their reversible modification through host–guest interaction. Journal of Polymer Science Part A, 2010, 48, 3515-3522.	2.5	15
180	Evidence of formation of site-selective inclusion complexation between \hat{l}^2 -cyclodextrin and poly(ethylene oxide)-block-poly(propylene oxide)- block-poly(ethylene oxide) copolymers. Journal of Chemical Physics, 2010, 132, 204903.	1.2	14

#	Article	IF	CITATIONS
181	Supramolecular Structure of β-Cyclodextrin and Poly(ethylene oxide)- <i>block</i> -poly(propylene) Tj ETQq1 1	0.784314 r	rgBT ₄₄ Overlo <mark>ck</mark>
182	Functional Polymeric Nanoobjects by Cross-Linking Bulk Self-Assemblies of Poly(<i>tert</i> -butyl) Tj ETQq0 0 0) rgBT /Over	:lock_10 Tf 50 i
183	Dispersible Shaped Nanoobjects from Bulk Microphase Separation of High <i>T</i> _g Block Copolymers without Chemical Cross-linking. Macromolecules, 2010, 43, 10652-10658.	2.2	22
184	Stepwise Cleavable Star Polymers and Polymeric Gels Thereof. Macromolecules, 2010, 43, 7056-7061.	2.2	21
185	Supramolecular Hydrogels from Cisplatin-Loaded Block Copolymer Nanoparticles and α-Cyclodextrins with a Stepwise Delivery Property. Biomacromolecules, 2010, 11, 3086-3092.	2.6	73
186	Covalent Cross-Linked Polymer Gels with Reversible Solâ [^] Gel Transition and Self-Healing Properties. Macromolecules, 2010, 43, 1191-1194.	2.2	581
187	Amphiphilic Toothbrushlike Copolymers Based on Poly(ethylene glycol) and Poly($\hat{l}\mu$ -caprolactone) as Drug Carriers with Enhanced Properties. Biomacromolecules, 2010, 11, 1331-1338.	2.6	136
188	Tailoring dendronized polymers. Chemical Communications, 2010, 46, 5049.	2.2	109
189	Dualâ€Responsive Supramolecular Hydrogels from Waterâ€Soluble PEGâ€Grafted Copolymers and Cyclodextrin. Macromolecular Bioscience, 2009, 9, 902-910.	2.1	64
190	Cylindrical molecular brushes with a loose grafting density. Journal of Polymer Science Part A, 2009, 47, 5527-5533.	2.5	17
191	Hierarchical Structure in Oriented Fibers of a Dendronized Polymer. Macromolecules, 2009, 42, 281-287.	2.2	45
192	Functional sandwich-like organic/inorganic nanoplates from gelable triblock terpolymers. Journal of Materials Chemistry, 2009, 19, 3482.	6.7	16
193	Dendronized polymer as building block for layer-by-layer assembly: Polyelectrolyte multilayer films for incorporation and controlled release of water-insoluble dye. Polymer, 2008, 49, 1520-1526.	1.8	21
194	pHâ€∤temperatureâ€sensitive supramolecular micelles based on cyclodextrin polyrotaxane. Polymer International, 2008, 57, 714-721.	1.6	34
195	Synthesis, characterization, and selfâ€assembly of combâ€dendronized amphiphilic block copolymers. Journal of Polymer Science Part A, 2008, 46, 4205-4217.	2.5	17
196	Synthesis and encapsulation properties of dendronized polymer with Fréchetâ€type dendrons peripherally decorated by carboxylic acid functionalization. Journal of Polymer Science Part A, 2008, 46, 4564-4574.	2.5	6
197	Synthesis of Novel Rodâ€Coil Amphiphilic Block Copolymers PAAâ€ <i>b</i> àêDPS with Fréchetâ€Type Dendronized Polystyrene and Poly(acrylic acid). Macromolecular Rapid Communications, 2008, 29, 757-762.	2.0	12
198	Functionalization of Crosslinked Vesicles by Coâ€Selfâ€Assembly of a Gelable Diblock Copolymer and Mercaptosilane. Macromolecular Rapid Communications, 2008, 29, 1368-1371.	2.0	16

#	Article	IF	Citations
199	Preparation of branched polyacrylonitrile through selfâ€condensing vinyl copolymerization. Journal of Applied Polymer Science, 2008, 110, 494-500.	1.3	9
200	Amphiphilic polymer brushes with alternating PCL and PEO grafts through radical copolymerization of styrenic and maleimidic macromonomers. Polymer, 2008, 49, 405-411.	1.8	63
201	ATRP of 3-(triethoxysilyl)propyl methacrylate and preparation of "stable―gelable block copolymers. European Polymer Journal, 2008, 44, 3835-3841.	2.6	22
202	Supramolecular ABA Triblock Copolymer with Polyrotaxane as B Block and Its Hierarchical Self-Assembly. Macromolecules, 2008, 41, 5295-5300.	2.2	65
203	Smart Organic/Inorganic Hybrid Nanoobjects with Controlled Shapes by Self-Assembly of Gelable Block Copolymers. Macromolecules, 2008, 41, 1800-1807.	2.2	44
204	Mesostructured Spheres of Organic/Inorganic Hybrid from Gelable Block Copolymers and Arched Nano-objects Thereof. Langmuir, 2008, 24, 6542-6548.	1.6	29
205	Onionlike Spherical Polymer Composites with Controlled Dispersion of Gold Nanoclusters. Chemistry of Materials, 2008, 20, 23-25.	3.2	32
206	Codendronized Polymers:Â Wormlike Molecular Objects with a Segmented Structure. Macromolecules, 2007, 40, 9084-9093.	2.2	30
207	Perforated Block Copolymer Vesicles with a Highly Folded Membrane. Macromolecules, 2007, 40, 4389-4392.	2.2	43
208	Supramolecular Hydrogels Hybridized with Single-Walled Carbon Nanotubes. Macromolecules, 2007, 40, 3402-3407.	2.2	72
209	NMR Studies on Selectivity of \hat{l}^2 -Cyclodextrin to Fluorinated/Hydrogenated Surfactant Mixtures. Journal of Physical Chemistry B, 2007, 111, 8089-8095.	1.2	30
210	Reactive Block Copolymer Vesicles with an Epoxy Wall. Langmuir, 2007, 23, 790-794.	1.6	40
211	Organicâ^'Inorganic Hybrid Materials by Self-Gelation of Block Copolymer Assembly and Nanoobjects with Controlled Shapes Thereof. Macromolecules, 2007, 40, 5916-5922.	2.2	54
212	Oneâ€Pot Approach to Synthesize Starâ€Shaped Polystyrenes via RAFTâ€Mediated Radical Copolymerization. Macromolecular Chemistry and Physics, 2007, 208, 2455-2462.	1.1	13
213	Robust Organic/Inorganic Hybrid Porous Thin Films via Breathâ€Figure Method and Gelation Process. Macromolecular Rapid Communications, 2007, 28, 2024-2028.	2.0	25
214	Dispersing multi-walled carbon nanotubes with water–soluble block copolymers and their use as supports for metal nanoparticles. Carbon, 2007, 45, 285-292.	5.4	111
215	Synthesis of dendronized polymer brushes containing metallo-supramolecular polymer side chains. Journal of Polymer Science Part A, 2007, 45, 3303-3310.	2.5	29
216	Divergent synthesis of dendrimer-like macromolecules through a combination of atom transfer radical polymerization and click reaction. Journal of Polymer Science Part A, 2007, 45, 3330-3341.	2.5	71

#	Article	IF	CITATIONS
217	Codendronized polymers pendent with alternating dendritic wedges. Journal of Polymer Science Part A, 2007, 45, 3994-4001.	2.5	23
218	Synthesis of amphiphilic triblock copolymers and application for morphology control of calcium carbonate crystals. Polymer, 2007, 48, 4344-4351.	1.8	17
219	Composite Thin Film by Hydrogen-Bonding Assembly of Polymer Brush and Poly(vinylpyrrolidone). Langmuir, 2006, 22, 338-343.	1.6	46
220	Formation of CdS Nanoparticle Necklaces with Functionalized Dendronized Polymers. Small, 2006, 2, 1314-1319.	5.2	34
221	Synthesis of well-defined macromonomers by the combination of atom transfer radical polymerization and a click reaction. Journal of Polymer Science Part A, 2006, 44, 6103-6113.	2.5	65
222	Synthesis of bis(2,2′:6′,2″-terpyridine)-terminated telechelic polymers by RAFT polymerization and ruthenium–polymer complexation thereof. European Polymer Journal, 2006, 42, 2398-2406.	2.6	22
223	Toward understanding the effect of substitutes and solvents on entropic and enthalpic elasticity of single dendronized copolymers. Polymer, 2006, 47, 2499-2504.	1.8	17
224	Allyl functionalized telechelic linear polymer and star polymer via RAFT polymerization. Polymer, 2006, 47, 5259-5266.	1.8	52
225	Preparation of platinum nanoparticles using star-block copolymer with a carboxylic core. Journal of Colloid and Interface Science, 2006, 298, 177-182.	5.0	25
226	Double-Hydrophilic Polymer Brushes: Synthesis and Application for Crystallization Modification of Calcium Carbonate. Macromolecular Chemistry and Physics, 2006, 207, 684-693.	1.1	23
227	Hydrophilic Block Copolymer Aggregation in Solution Induced by Selective Threading of Cyclodextrins. Macromolecular Chemistry and Physics, 2006, 207, 1764-1772.	1.1	24
228	Novel Hybrid Polymer Brushes with Alternating Dendritic Wedges and Linear Side Chains. Macromolecular Chemistry and Physics, 2006, 207, 1394-1403.	1.1	34
229	Gelation Inside Block Copolymer Aggregates and Organic/Inorganic Nanohybrids. Macromolecular Rapid Communications, 2006, 27, 741-750.	2.0	21
230	Back Cover: Macromol. Rapid Commun. 10/2006. Macromolecular Rapid Communications, 2006, 27, 812-812.	2.0	0
231	Synthesis of miktoarm star (block) polymers based on a heterofunctional initiator via combination of ROP, ATRP and functional group transformation. European Polymer Journal, 2005, 41, 1177-1186.	2.6	29
232	Hairy Nanospheres by Gelation of Reactive Block Copolymer Micelles. Macromolecular Rapid Communications, 2005, 26, 491-494.	2.0	47
233	Synthesis of well-defined star polymers and star block copolymers from dendrimer initiators by atom transfer radical polymerization. Polymer, 2005, 46, 5808-5819.	1.8	69
234	One-pot synthesis of star polymer by ATRP of bismaleimide and an excess of styrene with a conventional initiator. Polymer, 2005, 46, 5698-5701.	1.8	28

#	Article	IF	CITATIONS
235	Two Cloud-Point Phenomena in Tetrabutylammonium Perfluorooctanoate Aqueous Solutions:  Anomalous Temperature-Induced Phase and Structure Transitions. Journal of Physical Chemistry B, 2005, 109, 5237-5242.	1.2	26
236	Inclusion Interaction of Highly Densely PEO Grafted Polymer Brush and \hat{l}_{\pm} -Cyclodextrin. Macromolecules, 2005, 38, 3845-3851.	2.2	87
237	Inclusion Complexation between Comblike PEO Grafted Polymers and α-Cyclodextrin. Macromolecules, 2005, 38, 3351-3355.	2.2	62
238	Amphiphilic ABC Triblock Copolymer-Assisted Synthesis of Core/Shell Structured CdTe Nanowires. Langmuir, 2005, 21, 4205-4210.	1.6	45
239	Reactive Dendronized Copolymer of Styryl Dendron and Maleic Anhydride:Â A Single Molecular Scaffold. Macromolecules, 2005, 38, 5069-5077.	2.2	36
240	Preparation of Organic/Inorganic Hybrid Hollow Particles Based on Gelation of Polymer Vesicles. Macromolecules, 2004, 37, 5710-5716.	2.2	140
241	Preparation of poly(ethylene oxide) star polymers and poly(ethylene oxide)-polystyrene heteroarm star polymers by atom transfer radical polymerization. Journal of Polymer Science Part A, 2004, 42, 2263-2271.	2.5	57
242	Preparation of novel macromonomers and study of their polymerization. Journal of Polymer Science Part A, 2004, 42, 3887-3896.	2.5	22
243	Organic–Inorganic Hybrid Nanoparticles with a Complex Hollow Structure. Angewandte Chemie - International Edition, 2004, 43, 5084-5087.	7.2	161
244	PCL Star Polymer, PCL-PS Heteroarm Star Polymer by ATRP, and Core-Carboxylated PS Star Polymer Thereof. Macromolecules, 2004, 37, 3588-3594.	2.2	99
245	Atom-Transfer Radical Polymerization of a Reactive Monomer:Â 3-(Trimethoxysilyl)propyl Methacrylate. Macromolecules, 2004, 37, 6322-6328.	2.2	96
246	A Novel Way To Synthesize Star Polymers in One Pot by ATRP of N-[2-(2-Bromoisobutyryloxy)ethyl]maleimide and Styrene. Macromolecules, 2004, 37, 18-26.	2.2	96
247	Influence of Hair Density and Hair Length on Interparticle Interactions of Spherical Polymer Brushes in a Homopolymer Matrix. Macromolecules, 2003, 36, 4226-4235.	2.2	42
248	Organic/Inorganic Hybrid Vesicles Based on A Reactive Block Copolymer. Journal of the American Chemical Society, 2003, 125, 14710-14711.	6.6	219
249	ABA and Star Amphiphilic Block Copolymers Composed of Polymethacrylate Bearing a Galactose Fragment and Poly(E)-caprolactone). Macromolecular Rapid Communications, 2002, 23, 59-63.	2.0	76
250	Structure and dynamics of spherical polymer brushes in a homopolymer matrix., 2002, , 28-33.		3
251	Amphiphilic Block Copolymers with Pendent Sugar as Hydrophilic Segments and Their Surface Properties. Macromolecular Chemistry and Physics, 2001, 202, 3273-3278.	1.1	50
252	Synthesis of Poly(styryl sugar)s by TEMPO Mediated Free Radical Polymerization. Macromolecular Chemistry and Physics, 2001, 202, 3426-3431.	1.1	52

#	Article	IF	Citations
253	Synthesis and characterization of dendritic poly(amidoamine)-silica gel hybrids. Journal of Applied Polymer Science, 2000, 78, 2186-2190.	1.3	13
254	lonic conductivity of alkali-metal carboxylated dendritic poly(amidoamine) electrolytes and their lithium perchlorate salt complex. Polymer, 2000, 41, 6103-6111.	1.8	12
255	Two-phase hydroformylation reaction catalysed by rhodium-complexed water-soluble dendrimers. Journal of Molecular Catalysis A, 2000, 159, 225-232.	4.8	44
256	Optically active cyclic and linear poly(aryl esters) based on chiral 1,1′-bi-2-naphthol. Tetrahedron: Asymmetry, 1999, 10, 2079-2086.	1.8	7
257	Self-condensing vinyl polymerization of acrylamide. Polymer Bulletin, 1999, 43, 29-34.	1.7	27
258	Dendrigraft polystyrene initiated by poly(p-chloromethyl styrene): synthesis and properties. Polymer International, 1999, 48, 896-900.	1.6	16
259	Highly ordered assemblies of dendritic molecules bearing multi-hydrophilic head groups. Macromolecular Rapid Communications, 1999, 20, 71-76.	2.0	16
260	A novel dendritic anion conductor: quaternary ammonium salt of poly(amidoamine) (PAMAM). Macromolecular Rapid Communications, 1999, 20, 492-496.	2.0	15
261	Chiral dendrimers with axial chirality. Chirality, 1998, 10, 661-666.	1.3	28
262	Optical resolution ability of optically active poly (N-diphenyl-methyl maleimide). Science Bulletin, 1998, 43, 220-223.	1.7	0
263	Thermal degradation behavior of optically active N-phenyl, N-benzyl, N-diphenylmethyl and N-triphenylmethyl maleimide polymers. Polymer Degradation and Stability, 1998, 61, 21-25.	2.7	4
264	Optically active cyclic poly(ether sulfone)s based on chiral 1,1′-bi-2-naphthol. Tetrahedron: Asymmetry, 1998, 9, 4175-4181.	1.8	12
265	Asymmetric Polymerization of N-Diphenylmethylmaleimide with Chiral Anionic Initiators. Journal of Macromolecular Science - Pure and Applied Chemistry, 1997, 34, 327-334.	1.2	7
266	Ion-Pairs Feature of Polymerization Process of N-Vinylcarbazole with Chirally Organic Salt as Catalyst. Journal of Macromolecular Science - Pure and Applied Chemistry, 1997, 34, 2311-2319.	1.2	0
267	Characterization of Poly(N-Vinylcarbazole) Obtained via Asymmetrical Polymerization. Journal of Macromolecular Science - Pure and Applied Chemistry, 1997, 34, 655-663.	1.2	0
268	Asymmetric polymerization of N-triphenylmethylmaleimide with chiral anionic initiators. Polymer Bulletin, 1997, 38, 509-514.	1.7	8
269	Block copolymerization of triphenylmethyl methacrylate with other methacrylates using (\hat{a}^{-2}) -sparteine/9-fluorenyllithium as an initiator. Macromolecular Chemistry and Physics, 1997, 198, 279-290.	1.1	7
270	Thermal properties of optically active polytriphenylmethyl methacrylate derivatives containing pyridyl groups in bulky side groups. Polymer Degradation and Stability, 1996, 52, 101-105.	2.7	2

#	ARTICLE	IF	CITATIONS
271	Polymerization of N-Vinylcarbazole in the Presence of Organic Salts with Chiral or Stereodifferentiating Ligands. Journal of Macromolecular Science - Pure and Applied Chemistry, 1996, 33, 1017-1023.	1.2	8