Romeel Dave

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8542240/publications.pdf

Version: 2024-02-01

289 papers 29,320 citations

81
h-index

162 g-index

293 all docs 293
docs citations

times ranked

293

7578 citing authors

#	Article	IF	CITATIONS
1	How do galaxies get their gas?. Monthly Notices of the Royal Astronomical Society, 2005, 363, 2-28.	4.4	1,796
2	CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY. Astrophysical Journal, Supplement Series, 2011, 197, 35.	7.7	1,590
3	CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE ⟨i⟩HUBBLE SPACE TELESCOPE⟨ i⟩ OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS. Astrophysical Journal, Supplement Series, 2011, 197, 36.	7.7	1,549
4	Physical Models of Galaxy Formation in a Cosmological Framework. Annual Review of Astronomy and Astrophysics, 2015, 53, 51-113.	24.3	960
5	Baryons in the Warmâ€Hot Intergalactic Medium. Astrophysical Journal, 2001, 552, 473-483.	4.5	675
6	Theoretical Models of the Halo Occupation Distribution: Separating Central and Satellite Galaxies. Astrophysical Journal, 2005, 633, 791-809.	4.5	652
7	Galaxies in a simulated DCDM Universe - I. Cold mode and hot cores. Monthly Notices of the Royal Astronomical Society, 2009, 395, 160-179.	4.4	618
8	simba: Cosmological simulations with black hole growth and feedback. Monthly Notices of the Royal Astronomical Society, 2019, 486, 2827-2849.	4.4	576
9	Cosmological simulations of intergalactic medium enrichment from galactic outflows. Monthly Notices of the Royal Astronomical Society, 2006, 373, 1265-1292.	4.4	511
10	THE COS-HALOS SURVEY: PHYSICAL CONDITIONS AND BARYONIC MASS IN THE LOW-REDSHIFT CIRCUMGALACTIC MEDIUM. Astrophysical Journal, 2014, 792, 8.	4.5	464
11	The Large, Oxygen-Rich Halos of Star-Forming Galaxies Are a Major Reservoir of Galactic Metals. Science, 2011, 334, 948-952.	12.6	442
12	Mass, metal, and energy feedback in cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2008, 387, 577-600.	4.4	431
13	The Lowâ€Redshift Lyα Forest in Cold Dark Matter Cosmologies. Astrophysical Journal, 1999, 511, 521-545.	4.5	419
14	Feedback and recycled wind accretion: assembling the z = 0 galaxy mass function. Monthly Notices of the Royal Astronomical Society, 2010, 406, 2325-2338.	4.4	410
15	The origin of the galaxy mass–metallicity relation and implications for galactic outflows. Monthly Notices of the Royal Astronomical Society, 2008, 385, 2181-2204.	4.4	380
16	xCOLD GASS: The Complete IRAM 30 m Legacy Survey of Molecular Gas for Galaxy Evolution Studies. Astrophysical Journal, Supplement Series, 2017, 233, 22.	7.7	350
17	THEORETICAL EVOLUTION OF OPTICAL STRONG LINES ACROSS COSMIC TIME. Astrophysical Journal, 2013, 774, 100.	4.5	340
18	Galaxy evolution in cosmological simulations with outflows - II. Metallicities and gas fractions. Monthly Notices of the Royal Astronomical Society, 2011, 416, 1354-1376.	4.4	335

#	Article	IF	CITATIONS
19	THE MOSFIRE DEEP EVOLUTION FIELD (MOSDEF) SURVEY: REST-FRAME OPTICAL SPECTROSCOPY FOR \hat{a}^4 1500 <i>H</i> -SELECTED GALAXIES AT \$1.37leqslant zleqslant 3.8\$. Astrophysical Journal, Supplement Series, 2015, 218, 15.	7.7	312
20	Inferring the star formation histories of massive quiescent galaxies with bagpipes: evidence for multiple quenching mechanisms. Monthly Notices of the Royal Astronomical Society, 2018, 480, 4379-4401.	4.4	311
21	The Halo Occupation Distribution and the Physics of Galaxy Formation. Astrophysical Journal, 2003, 593, 1-25.	4.5	307
22	Halo Properties in Cosmological Simulations of Selfâ€interacting Cold Dark Matter. Astrophysical Journal, 2001, 547, 574-589.	4.5	301
23	Galaxy evolution in cosmological simulations with outflows - I. Stellar masses and star formation rates. Monthly Notices of the Royal Astronomical Society, 2011, 415, 11-31.	4.4	297
24	THE COS-HALOS SURVEY: RATIONALE, DESIGN, AND A CENSUS OF CIRCUMGALACTIC NEUTRAL HYDROGEN. Astrophysical Journal, 2013, 777, 59.	4.5	285
25	An analytic model for the evolution of the stellar, gas and metal content of galaxies. Monthly Notices of the Royal Astronomical Society, 2011, , no-no.	4.4	279
26	The galaxy stellar mass-star formation rate relation: evidence for an evolving stellar initial mass function?. Monthly Notices of the Royal Astronomical Society, 0, 385, 147-160.	4.4	270
27	xGASS: total cold gas scaling relations and molecular-to-atomic gas ratios of galaxies in the local Universe. Monthly Notices of the Royal Astronomical Society, 2018, 476, 875-895.	4.4	261
28	THE RELATION BETWEEN STAR FORMATION RATE AND STELLAR MASS FOR GALAXIES AT 3.5 â@½ <i>z</i> â@½ <candels. 183.<="" 2015,="" 799,="" astrophysical="" journal,="" td=""><td>6.5 IN 4.5</td><td>253</td></candels.>	6.5 IN 4.5	253
29	mufasa: galaxy formation simulations with meshless hydrodynamics. Monthly Notices of the Royal Astronomical Society, 2016, 462, 3265-3284.	4.4	243
30	Cooling Radiation and the Lyl± Luminosity of Forming Galaxies. Astrophysical Journal, 2001, 562, 605-617.	4.5	237
31	The mass evolution of the first galaxies: stellar mass functions and star formation rates at 4 < z < 7 in the CANDELS GOODS-South field. Monthly Notices of the Royal Astronomical Society, 2014, 444, 2960-2984.	4.4	236
32	SEDS: THE SPITZER EXTENDED DEEP SURVEY. SURVEY DESIGN, PHOTOMETRY, AND DEEP IRAC SOURCE COUNTS. Astrophysical Journal, 2013, 769, 80.	4.5	220
33	THE COS-DWARFS SURVEY: THE CARBON RESERVOIR AROUND SUB- <i>L</i> * GALAXIES. Astrophysical Journal, 2014, 796, 136.	4.5	196
34	Cold gas stripping in satellite galaxies: from pairs to clusters. Monthly Notices of the Royal Astronomical Society, 2017, 466, 1275-1289.	4.4	184
35	Galaxies in a simulated DCDM universe - II. Observable properties and constraints on feedback. Monthly Notices of the Royal Astronomical Society, 2009, 396, 2332-2344.	4.4	178
36	The neutral hydrogen content of galaxies in cosmological hydrodynamic simulations. Monthly Notices of the Royal Astronomical Society, 2013, 434, 2645-2663.	4.4	164

#	Article	IF	CITATIONS
37	Gravitational torque-driven black hole growth and feedback in cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2017, 464, 2840-2853.	4.4	162
38	IN-N-OUT: THE GAS CYCLE FROM DWARFS TO SPIRAL GALAXIES. Astrophysical Journal, 2016, 824, 57.	4.5	161
39	GOODS- <i>HERSCHEL</i> AND CANDELS: THE MORPHOLOGIES OF ULTRALUMINOUS INFRARED GALAXIES AT <i>z</i> â ¹ / ₄ 2. Astrophysical Journal, 2012, 757, 23.	4.5	157
40	Constraints on the Mass of Warm Dark Matter Particles and the Shape of the Linear Power Spectrum from the $L[CLC]y[/CLC]\hat{1}\pm Forest$. Astrophysical Journal, 2000, 543, L103-L106.	4.5	150
41	SHORT-LIVED STAR-FORMING GIANT CLUMPS IN COSMOLOGICAL SIMULATIONS OF <i>z < /i> â % 2 DISKS. Astrophysical Journal, 2012, 745, 11.</i>	4.5	146
42	IMAGING THE MOLECULAR GAS IN A SUBMILLIMETER GALAXY AT <i>z</i> z	4.5	144
43	A CENSUS OF OXYGEN IN STAR-FORMING GALAXIES: AN EMPIRICAL MODEL LINKING METALLICITIES, STAR FORMATION RATES, AND OUTFLOWS. Astrophysical Journal, 2012, 757, 54.	4.5	141
44	HIRAX: a probe of dark energy and radio transients. Proceedings of SPIE, 2016, , .	0.8	134
45	Tracing inflows and outflows with absorption lines in circumgalactic gas. Monthly Notices of the Royal Astronomical Society, 2014, 444, 1260-1281.	4.4	131
46	The Three Hundred project: a large catalogue of theoretically modelled galaxy clusters for cosmological and astrophysical applications. Monthly Notices of the Royal Astronomical Society, 2018, 480, 2898-2915.	4.4	131
47	NOT DEAD YET: COOL CIRCUMGALACTIC GAS IN THE HALOS OF EARLY-TYPE GALAXIES. Astrophysical Journal Letters, 2012, 758, L41.	8.3	128
48	Galaxy Merger Statistics and Inferred Bulgeâ€toâ€Disk Ratios in Cosmological SPH Simulations. Astrophysical Journal, 2006, 647, 763-772.	4.5	128
49	The MOSDEF Survey: The Evolution of the Mass–Metallicity Relation from z = 0 to z â^⅓ 3.3*. Astrophysical Journal, 2021, 914, 19.	4.5	124
50	The redshift and mass dependence on the formation of the Hubble sequence at $z \otimes gt$; 1 from CANDELS/UDS. Monthly Notices of the Royal Astronomical Society, 2013, 433, 1185-1201.	4.4	121
51	The intergalactic medium over the last 10 billion years - I. LyÎ \pm absorption and physical conditions. Monthly Notices of the Royal Astronomical Society, 2010, 408, 2051-2070.	4.4	117
52	Semi-analytic forecasts for <i>JWST</i> – I. UV luminosity functions at <i>z</i> Â=Â4–10. Monthly Notices of the Royal Astronomical Society, 2019, 483, 2983-3006.	4.4	116
53	The CAMELS Project: Cosmology and Astrophysics with Machine-learning Simulations. Astrophysical Journal, 2021, 915, 71.	4.5	113
54	The nature and origin of low-redshift Oâ€fvi absorbers. Monthly Notices of the Royal Astronomical Society, 2009, 395, 1875-1904.	4.4	112

#	Article	IF	CITATIONS
55	Galaxy Clustering and Galaxy Bias in a DCDM Universe. Astrophysical Journal, 2004, 601, 1-21.	4.5	109
56	The Growth of Galaxies in Cosmological Simulations of Structure Formation. Astrophysical Journal, 2002, 571, 1-14.	4.5	109
57	The intergalactic medium over the last 10 billion years - II. Metal-line absorption and physical conditions. Monthly Notices of the Royal Astronomical Society, 2012, 420, 829-859.	4.4	108
58	The MOSDEF Survey: A Stellar Mass–SFR–Metallicity Relation Exists at zÂâ^¼Â2.3 ^{â^—} . Astrophy. Journal, 2018, 858, 99.	sical 4.5	108
59	On the evolutionary history of stars and their fossil mass and light. Monthly Notices of the Royal Astronomical Society, 2007, 379, 985-1002.	4.4	107
60	Voigtâ€Profile Analysis of the Lyα Forest in a Cold Dark Matter Universe. Astrophysical Journal, 1997, 477, 21-26.	4.5	106
61	Lyα EMISSION FROM COSMIC STRUCTURE. I. FLUORESCENCE. Astrophysical Journal, 2010, 708, 1048-1075.	4.5	106
62	The dust-to-gas and dust-to-metal ratio in galaxies from $z=0$ ÂtoÂ6. Monthly Notices of the Royal Astronomical Society, 2019, 490, 1425-1436.	4.4	106
63	Gas clumping in self-consistent reionization models. Monthly Notices of the Royal Astronomical Society, 2012, 427, 2464-2479.	4.4	104
64	ZFOURGE/CANDELS: ON THE EVOLUTION OF (i) M (i) * GALAXY PROGENITORS FROM (i) z (i) = 3 TO 0.5. Astrophysical Journal, 2015, 803, 26.	4.5	104
65	A CRITICAL LOOK AT THE MASS-METALLICITY-STAR FORMATION RATE RELATION IN THE LOCAL UNIVERSE. I. AN IMPROVED ANALYSIS FRAMEWORK AND CONFOUNDING SYSTEMATICS. Astrophysical Journal, 2014, 797, 126.	4.5	101
66	Hydrogen and metal line absorption around low-redshift galaxies in cosmological hydrodynamic simulations. Monthly Notices of the Royal Astronomical Society, 2013, 432, 89-112.	4.4	99
67	THE EVOLUTION OF STAR FORMATION HISTORIES OF QUIESCENT GALAXIES. Astrophysical Journal, 2016, 832, 79.	4.5	99
68	Cosmological Limits on the Neutrino Mass from theLyl±Forest. Physical Review Letters, 1999, 83, 1092-1095.	7.8	98
69	Molecular Star Formation Rate Indicators in Galaxies. Astrophysical Journal, 2008, 684, 996-1008.	4.5	98
70	EXTENDED Lyα NEBULAE AT <i>>z</i> >â% f 2.3: AN EXTREMELY RARE AND STRONGLY CLUSTERED POPULATION?. Astrophysical Journal, 2009, 693, 1579-1587.	4.5	98
71	Parallel TreeSPH. New Astronomy, 1997, 2, 277-297.	1.8	96
72	The Physical and Photometric Properties of Highâ€Redshift Galaxies in Cosmological Hydrodynamic Simulations. Astrophysical Journal, 2006, 639, 672-694.	4.5	95

#	Article	IF	Citations
73	How Well Can We Measure the Stellar Mass of a Galaxy: The Impact of the Assumed Star Formation History Model in SED Fitting. Astrophysical Journal, 2020, 904, 33.	4.5	95
74	BLACK HOLE-GALAXY CORRELATIONS WITHOUT SELF-REGULATION. Astrophysical Journal, 2013, 770, 5.	4.5	94
75	THE <i>GALEX </i> ARECIBO SDSS SURVEY. V. THE RELATION BETWEEN THE H I CONTENT OF GALAXIES AND METAL ENRICHMENT AT THEIR OUTSKIRTS. Astrophysical Journal, 2012, 745, 66.	4.5	93
76	CONNECTION BETWEEN THE CIRCUMGALACTIC MEDIUM AND THE INTERSTELLAR MEDIUM OF GALAXIES: RESULTS FROM THE COS-GASS SURVEY. Astrophysical Journal, 2015, 813, 46.	4.5	90
77	usepackage{amsfonts} usepackage{amssymb} usepackage{bm} usepackage{mathrsfs} usepackage{pifont} usepackage{stmaryrd} usepackage{textcomp} usepackage{portland,xspace} usepackage{amsmath,amsxtra} usepackage[OT2,OT1]{fontenc} ewcommandcyr{ enewcommandmdefault{wncyr} enewcommandsfdefault{wncyss}	4.5	90
78	The nature of submillimetre galaxies in cosmological hydrodynamic simulations. Monthly Notices of the Royal Astronomical Society, 2010, , .	4.4	89
79	THE PHOTON UNDERPRODUCTION CRISIS. Astrophysical Journal Letters, 2014, 789, L32.	8.3	89
80	A Theory for the Variation of Dust Attenuation Laws in Galaxies. Astrophysical Journal, 2018, 869, 70.	4.5	85
81	Star formation and metallicity gradients in semi-analytic models of disc galaxy formation. Monthly Notices of the Royal Astronomical Society, 2013, 434, 1531-1548.	4.4	84
82	Mufasa: Galaxy star formation, gas, and metal properties across cosmic time. Monthly Notices of the Royal Astronomical Society, 0, , stx108.	4.4	84
83	The IRX \hat{a} e" \hat{i}^2 dust attenuation relation in cosmological galaxy formation simulations. Monthly Notices of the Royal Astronomical Society, 2018, 474, 1718-1736.	4.4	83
84	The VANDELS survey: the star-formation histories of massive quiescent galaxies at 1.0Â<ÂzÂ<Â1.3. Monthly Notices of the Royal Astronomical Society, 2019, 490, 417-439.	4.4	83
85	Hydrodynamic Simulation of the Cosmological Xâ€Ray Background. Astrophysical Journal, 2001, 557, 67-87.	4.5	83
86	The enrichment history of baryons in the Universe. Monthly Notices of the Royal Astronomical Society, 2007, 374, 427-435.	4.4	82
87	Xâ€Ray Scaling Relations of Galaxy Groups in a Hydrodynamic Cosmological Simulation. Astrophysical Journal, 2002, 579, 23-41.	4.5	82
88	Accretion, feedback and galaxy bimodality: a comparison of the GalICS semi-analytic model and cosmological SPH simulations. Monthly Notices of the Royal Astronomical Society, 2007, 377, 63-76.	4.4	81
89	Tracing the re-ionization-epoch intergalactic medium with metal absorption lines. Monthly Notices of the Royal Astronomical Society, 2009, 396, 729-758.	4.4	81
90	The stellar accretion origin of stellar population gradients in massive galaxies at large radii. Monthly Notices of the Royal Astronomical Society, 2015, 449, 528-550.	4.4	81

#	Article	IF	Citations
91	The growth of red sequence galaxies in a cosmological hydrodynamic simulation. Monthly Notices of the Royal Astronomical Society, 2012, 427, 1816-1829.	4.4	80
92	Deriving a multivariate $\hat{l}\pm CO$ conversion function using the [CII]/CO(1-0) ratio and its application to molecular gas scaling relations. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	79
93	THE METALLICITIES OF LOW STELLAR MASS GALAXIES AND THE SCATTER IN THE MASS-METALLICITY RELATION. Astrophysical Journal, 2012, 750, 120.	4.5	79
94	The Role of Galactic Winds on Molecular Gas Emission from Galaxy Mergers. Astrophysical Journal, Supplement Series, 2008, 176, 331-354.	7.7	78
95	PROBING VERY BRIGHT END OF GALAXY LUMINOSITY FUNCTION AT <i>z</i> ≳ 7 USING <i>HUBBLE SPACE TELESCOPE</i> PURE PARALLEL OBSERVATIONS. Astrophysical Journal Letters, 2011, 728, L22.	8.3	78
96	The effect of metal enrichment and galactic winds on galaxy formation in cosmological zoom simulations. Monthly Notices of the Royal Astronomical Society, 2013, 436, 2929-2949.	4.4	77
97	Hot gas in massive haloes drives both mass quenching and environment quenching. Monthly Notices of the Royal Astronomical Society, 2015, 447, 374-391.	4.4	77
98	Semi-analytic forecasts for JWST – II. Physical properties and scaling relations for galaxies at zÂ=Â4–10. Monthly Notices of the Royal Astronomical Society, 2019, 490, 2855-2879.	4.4	77
99	The Statistical and Physical Properties of the Lowâ€Redshift Lyα Forest Observed with theHubble Space Telescope/STIS. Astrophysical Journal, 2001, 553, 528-537.	4.5	76
100	The physical properties and detectability of reionization-epoch galaxies. Monthly Notices of the Royal Astronomical Society, 2006, 370, 273-288.	4.4	76
101	$\tilde{\text{SAGAME}}$ Simulations of the $$, and $$ Line Emission from Star-forming Galaxies at. Astrophysical Journal, 2017, 846, 105.	4.5	76
102	Smoothly rising star formation histories during the reionization epoch. Monthly Notices of the Royal Astronomical Society, 2010, , no-no.	4.4	75
103	How is star formation quenched in massive galaxies?. Monthly Notices of the Royal Astronomical Society, 2010, 407, 749-771.	4.4	75
104	PHYSICAL PROPERTIES OF SPECTROSCOPICALLY CONFIRMED GALAXIES AT <i>z</i> å@¾ 6. II. MORPHOLOGY OF THE REST-FRAME UV CONTINUUM AND Lyı̂± EMISSION. Astrophysical Journal, 2013, 773, 153.	4.5	73
105	Mergers, starbursts, and quenching in the simba simulation. Monthly Notices of the Royal Astronomical Society, 2019, 490, 2139-2154.	4.4	72
106	Baryon Dynamics, Dark Matter Substructure, and Galaxies. Astrophysical Journal, 2008, 678, 6-21.	4.5	72
107	Constraints on physical properties of z $\hat{a}^{1}/4$ 6 galaxies using cosmological hydrodynamic simulations. Monthly Notices of the Royal Astronomical Society, 2007, 376, 1861-1878.	4.4	71
108	STRONG FIELD-TO-FIELD VARIATION OF Lyα NEBULAE POPULATIONS AT <i>z</i>)â%f 2.3. Astrophysical Journal, 2010, 719, 1654-1671.	4.5	71

#	Article	IF	CITATIONS
109	Galaxy cold gas contents in modern cosmological hydrodynamic simulations. Monthly Notices of the Royal Astronomical Society, 2020, 497, 146-166.	4.4	71
110	The VANDELS survey: the stellar metallicities of star-forming galaxies at \$mathbf {2.5,, lt,, z,, lt,, 5.0}\$. Monthly Notices of the Royal Astronomical Society, 2019, 487, 2038-2060.	4.4	70
111	Interpreting the Relationship between Galaxy Luminosity, Color, and Environment. Astrophysical Journal, 2005, 629, 625-632.	4.5	69
112	GALACTIC OUTFLOWS AND PHOTOIONIZATION HEATING IN THE REIONIZATION EPOCH. Astrophysical Journal, 2011, 743, 169.	4.5	69
113	Integral field spectroscopy of 2.0< <i>z < /i>< 2.7 < /b> submillimetre galaxies: gas morphologies and kinematics. Monthly Notices of the Royal Astronomical Society, 2012, 424, 2232-2248.</i>	4.4	68
114	Quenching massive galaxies with on-the-fly feedback in cosmological hydrodynamic simulations. Monthly Notices of the Royal Astronomical Society, 2011, 417, 2676-2695.	4.4	67
115	Constraining the Metallicity of the Lowâ€Density Lyl± Forest Using OviAbsorption. Astrophysical Journal, 1998, 509, 661-677.	4.5	65
116	Probing Galaxy Formation with HeiiCooling Lines. Astrophysical Journal, 2006, 640, 539-552.	4.5	65
117	Equilibrium model constraints on baryon cycling across cosmic time. Monthly Notices of the Royal Astronomical Society, 2015, 452, 1184-1200.	4.4	65
118	Baryon cycling in the low-redshift circumgalactic medium: a comparison of simulations to the COS-Halos survey. Monthly Notices of the Royal Astronomical Society, 2016, 459, 1745-1763.	4.4	65
119	How do Galaxies Get Their Gas?. Astrophysics and Space Science Library, 2003, , 185-192.	2.7	65
120	From Galaxyâ€Galaxy Lensing to Cosmological Parameters. Astrophysical Journal, 2006, 652, 26-42.	4.5	64
121	The Heavyâ€Element Enrichment of Lyα Clouds in the Virgo Supercluster. Astrophysical Journal, 2002, 575, 697-711.	4.5	63
122	nIFTy galaxy cluster simulations – I. Dark matter and non-radiative models. Monthly Notices of the Royal Astronomical Society, 2016, 457, 4063-4080.	4.4	63
123	Supermassive black holes in cosmological simulations I: <i>M</i> BH â^' <i>M</i> â<† relation and black hole mass function. Monthly Notices of the Royal Astronomical Society, 2021, 503, 1940-1975.	4.4	63
124	Xâ€Ray Absorption by the Lowâ€Redshift Intergalactic Medium: A Numerical Study of the Î→ Cold Dark Matter Model. Astrophysical Journal, 2003, 594, 42-62.	4.5	62
125	Enrichment and pre-heating in intragroup gas from galactic outflows. Monthly Notices of the Royal Astronomical Society, 2008, 391, 110-123.	4.4	62
126	PHYSICAL PROPERTIES OF SPECTROSCOPICALLY CONFIRMED GALAXIES AT <i>>z</i> 26 % 6. I. BASIC CHARACTERISTICS OF THE REST-FRAME UV CONTINUUM AND Lyα EMISSION. Astrophysical Journal, 2013, 772, 99.	4.5	62

#	Article	IF	CITATION
127	TORQUE-LIMITED GROWTH OF MASSIVE BLACK HOLES IN GALAXIES ACROSS COSMIC TIME. Astrophysical Journal, 2015, 800, 127.	4.5	62
128	ON THE MASS–METALLICITY–STAR FORMATION RATE RELATION FOR GALAXIES AT‹i›z‹/i›â^1⁄42. Astrophys Journal, 2015, 808, 25.	ical 4.5	62
129	Black hole – Galaxy correlations in simba. Monthly Notices of the Royal Astronomical Society, 2019, 487, 5764-5780.	4.4	62
130	The diversity and variability of star formation histories in models of galaxy evolution. Monthly Notices of the Royal Astronomical Society, 2020, 498, 430-463.	4.4	62
131	THE PROPERTIES OF THE CIRCUMGALACTIC MEDIUM IN RED AND BLUE GALAXIES: RESULTS FROM THE COS-GASS+COS-HALOS SURVEYS. Astrophysical Journal, 2016, 833, 259.	4.5	60
132	COSMOLOGICAL ZOOM SIMULATIONS OF $\langle i \rangle z \langle i \rangle = 2$ GALAXIES: THE IMPACT OF GALACTIC OUTFLOWS. Astrophysical Journal, 2014, 782, 84.	4.5	55
133	Constraining the contribution of active galactic nuclei to reionization. Monthly Notices of the Royal Astronomical Society, 2018, 473, 227-240.	4.4	53
134	Galaxy gas fractions at high redshift: the tension between observations and cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2012, 426, 1178-1184.	4.4	52
135	The properties of (sub-)millimetre-selected galaxies as revealed by CANDELS HST WFC3/IR imaging in GOODS-South. Monthly Notices of the Royal Astronomical Society, 2013, 432, 2012-2042.	4.4	52
136	Reionization in Technicolor. Monthly Notices of the Royal Astronomical Society, 2018, 480, 2628-2649.	4.4	51
137	Tracing Outflowing Metals in Simulations of Dwarf and Spiral Galaxies. Astrophysical Journal, 2018, 867, 142.	4.5	51
138	A new moment method for continuum radiative transfer in cosmological re-ionization. Monthly Notices of the Royal Astronomical Society, 2009, 393, 1090-1106.	4.4	50
139	The growth of central and satellite galaxies in cosmological smoothed particle hydrodynamics simulations. Monthly Notices of the Royal Astronomical Society, 2009, 399, 650-662.	4.4	50
140	And yet it flips: connecting galactic spin and the cosmic web. Monthly Notices of the Royal Astronomical Society, 2020, 493, 362-381.	4.4	49
141	Metal Lines Associated with Lyα Absorbers: A Comparison of Theory and Observations. Astrophysical Journal, 1997, 487, 482-488.	4.5	48
142	Molecular Outflows in Galaxy Merger Simulations with Embedded Active Galactic Nuclei. Astrophysical Journal, 2006, 642, L107-L110.	4.5	48
143	Lyman Break Galaxies and the Lyl± Forest. Astrophysical Journal, 2003, 594, 75-96.	4.5	47
144	Testing subhalo abundance matching in cosmological smoothed particle hydrodynamics simulations. Monthly Notices of the Royal Astronomical Society, 2012, 423, 3458-3473.	4.4	47

#	Article	IF	Citations
145	The simulated H l sky at low redshift. Astronomy and Astrophysics, 2009, 504, 15-32.	5.1	46
146	On the connection between the intergalactic medium and galaxies: the H i–galaxy cross-correlation at z ≲ 1â~ Monthly Notices of the Royal Astronomical Society, 2013, 437, 2017-2075.	4.4	46
147	Simulating the 21Âcm signal from reionization including non-linear ionizations and inhomogeneous recombinations. Monthly Notices of the Royal Astronomical Society, 2016, 457, 1550-1567.	4.4	46
148	nIFTy galaxy cluster simulations – II. Radiative models. Monthly Notices of the Royal Astronomical Society, 2016, 459, 2973-2991.	4.4	45
149	Semi-analytic forecasts for JWST – IV. Implications for cosmic reionization and LyC escape fraction. Monthly Notices of the Royal Astronomical Society, 2020, 496, 4574-4592.	4.4	45
150	MIGHTEE-HI: The H†I emission project of the MeerKAT MIGHTEE survey. Astronomy and Astrophysics, 2021, 646, A35.	5.1	45
151	THE LBT BO×TES FIELD SURVEY. I. THE REST-FRAME ULTRAVIOLET AND NEAR-INFRARED LUMINOSITY FUNCTIONS AND CLUSTERING OF BRIGHT LYMAN BREAK GALAXIES AT <i>Z2013, 774, 28.</i>	4.5	44
152	The impact of quenching on galaxy profiles in the <scp>simba</scp> simulation. Monthly Notices of the Royal Astronomical Society, 2020, 494, 6053-6071.	4.4	43
153	Cosmological implications of a stellar initial mass function that varies with the Jeans mass in galaxies. Monthly Notices of the Royal Astronomical Society, 2012, 423, 3601-3615.	4.4	42
154	Reproducing submillimetre galaxy number counts with cosmological hydrodynamic simulations. Monthly Notices of the Royal Astronomical Society, 2021, 502, 772-793.	4.4	42
155	Painting galaxies into dark matter haloes using machine learning. Monthly Notices of the Royal Astronomical Society, 2018, 478, 3410-3422.	4.4	41
156	The reionization of carbon. Monthly Notices of the Royal Astronomical Society, 2015, 447, 2526-2539.	4.4	40
157	The Three Hundred Project: The evolution of galaxy cluster density profiles. Monthly Notices of the Royal Astronomical Society 2019, 483, 3390-3403. The Nature of CO Emission from document class (aastex) usepackage (amsbsy) usepackage (amsfonts)	4.4	40
158	usepackage{amssymb} usepackage{bm} usepackage{mathrsfs} usepackage{pifont} usepackage{stmaryrd} usepackage{textcomp} usepackage{portland,xspace} usepackage{amsmath,amsxtra} usepackage[OT2,OT1]{fontenc} ewcommandcyr{ enewcommandmdefault{wncyr} enewcommandsfdefault{wncyss}	7.7	39
159	enewcommandencodingdefault{OT2} ormalfont selectfont} DeclareTextFontCommand{extcvr} IV. Quantifying the influence of baryons on halo properties. Monthly Notices of the Royal Astronomical Society, 2016, 458, 4052-4073.	4.4	39
160	LUMINOUS AND HIGH STELLAR MASS CANDIDATE GALAXIES AT <i>z</i> a%^8 DISCOVERED IN THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY. Astrophysical Journal, 2012, 761, 177.	4.5	38
161	PROPERTIES OF SUBMILLIMETER GALAXIES IN THE CANDELS GOODS-SOUTH FIELD. Astrophysical Journal, 2014, 785, 111.	4.5	38
162	mufasa: the assembly of the red sequence. Monthly Notices of the Royal Astronomical Society, 2017, 471, 1671-1687.	4.4	38

#	Article	IF	CITATIONS
163	The host haloes of O i absorbers in the reionization epoch. Monthly Notices of the Royal Astronomical Society, 2013, 436, 1818-1835.	4.4	37
164	Pressure support versus thermal broadening in the Lyman \hat{l}_{\pm} forest - I. Effects of the equation of state on longitudinal structure. Monthly Notices of the Royal Astronomical Society, 2010, , .	4.4	36
165	ALMA Measures Rapidly Depleted Molecular Gas Reservoirs in Massive Quiescent Galaxies at z \hat{a}^4 1.5. Astrophysical Journal, 2021, 908, 54.	4.5	36
166	THE PROPERTIES OF Lyα NEBULAE: GAS KINEMATICS FROM NONRESONANT LINES. Astrophysical Journal, 2014, 793, 114.	4.5	36
167	GAS KINEMATICS IN Lyα NEBULAE [,] . Astrophysical Journal, 2011, 735, 87.	4.5	35
168	PHYSICAL PROPERTIES OF SPECTROSCOPICALLY CONFIRMED GALAXIES AT zÂ≥Â6. III. STELLAR POPULATIONS FROM SED MODELING WITH SECURE Lyα EMISSION AND REDSHIFTS*. Astrophysical Journal, 2016, 816, 16.	S _{4.5}	35
169	The impact of the connectivity of the cosmic web on the physical properties of galaxies at its nodes. Monthly Notices of the Royal Astronomical Society, 2020, 491, 4294-4309.	4.4	35
170	The Lowâ€Redshift Lyl± Forest toward PKS 0405â^'123. Astrophysical Journal, 2006, 636, 631-653.	4.5	35
171	The growth and enrichment of intragroup gas. Monthly Notices of the Royal Astronomical Society, 2016, 456, 4266-4290.	4.4	34
172	<scp>the threehundred</scp> : the structure and properties of cosmic filaments in the outskirts of galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2021, 502, 714-727.	4.4	34
173	<i>CHANDRA</i> VIEW OF THE WARM-HOT INTERGALACTIC MEDIUM TOWARD 1ES 1553+113: ABSORPTION-LINE DETECTIONS AND IDENTIFICATIONS. I Astrophysical Journal, 2013, 769, 90.	4.5	33
174	Equilibrium model prediction for the scatter in the star-forming main sequence. Monthly Notices of the Royal Astronomical Society, 2017, 464, 2766-2776.	4.4	33
175	Epoch of reionization 21Âcm forecasting from MCMC-constrained semi-numerical models. Monthly Notices of the Royal Astronomical Society, 2017, 468, 122-139.	4.4	33
176	Imprints of temperature fluctuations on the z $\hat{a}^{1/4}$ 5 Lyman- \hat{l}_{\pm} forest: a view from radiation-hydrodynamic simulations of reionization. Monthly Notices of the Royal Astronomical Society, 2019, 490, 3177-3195.	4.4	33
177	The origin of galaxy colour bimodality in the scatter of the stellar-to-halo mass relation. Nature Astronomy, 2021, 5, 1069-1076.	10.1	33
178	nIFTY galaxy cluster simulations – III. The similarity and diversity of galaxies and subhaloes. Monthly Notices of the Royal Astronomical Society, 2016, 458, 1096-1116.	4.4	32
179	In pursuit of giants. Astronomy and Astrophysics, 2020, 644, A144.	5.1	32
180	Star Formation Stochasticity Measured from the Distribution of Burst Indicators. Astrophysical Journal, 2019, 873, 74.	4.5	31

#	Article	IF	CITATIONS
181	<scp>The Three Hundred</scp> project: The <scp>gizmo-simba</scp> run. Monthly Notices of the Royal Astronomical Society, 2022, 514, 977-996.	4.4	31
182	THE HIGH-ION CONTENT AND KINEMATICS OF LOW-REDSHIFT LYMAN LIMIT SYSTEMS. Astrophysical Journal, 2013, 778, 187.	4.5	30
183	Cosmological baryon transfer in the simba simulations. Monthly Notices of the Royal Astronomical Society, 2020, 491, 6102-6119.	4.4	30
184	The CAMELS Multifield Data Set: Learning the Universe's Fundamental Parameters with Artificial Intelligence. Astrophysical Journal, Supplement Series, 2022, 259, 61.	7.7	30
185	PROBING POPULATION III STARS IN GALAXY IOK-1 AT $\langle i \rangle z \langle j \rangle = 6.96$ THROUGH He II EMISSION. Astrophysical Journal Letters, 2011, 736, L28.	8.3	29
186	STELLAR MASS–GAS-PHASE METALLICITY RELATION AT 0.5 â‰ÂzÂâ‰�.7: A POWER LAW WITH INCREASING S TOWARD THE LOW-MASS REGIME. Astrophysical Journal, 2016, 822, 103.	SÇATTER	29
187	The SFR–M _* Correlation Extends to Low Mass at High Redshift. Astrophysical Journal, 2018, 866, 120.	4.5	29
188	The Lyman-α Forest as a Cosmological Tool. AIP Conference Proceedings, 2003, , .	0.4	28
189	The impact of environment and mergers on the H i content of galaxies in hydrodynamic simulations. Monthly Notices of the Royal Astronomical Society, 2015, 453, 3981-3999.	4.4	28
190	Empirical constraints for the magnitude and composition of galactic winds. Astrophysics and Space Science, 2014, 349, 873-879.	1.4	27
191	Jet feedback and the photon underproduction crisis in simba. Monthly Notices of the Royal Astronomical Society, 2020, 499, 2617-2635.	4.4	27
192	X-ray emission from hot gas in galaxy groups and clusters in simba. Monthly Notices of the Royal Astronomical Society, 2020, 498, 3061-3076.	4.4	27
193	Supermassive black holes in cosmological simulations – II: the AGN population and predictions for upcoming X-ray missions. Monthly Notices of the Royal Astronomical Society, 2021, 509, 3015-3042.	4.4	27
194	Co-evolution of massive black holes and their host galaxies at high redshift: discrepancies from six cosmological simulations and the key role of <i>JWST</i> . Monthly Notices of the Royal Astronomical Society, 2022, 511, 3751-3767.	4.4	27
195	The cosmic evolution of the IMF under the Jeans conjecture with implications for massive galaxies. Monthly Notices of the Royal Astronomical Society, 2013, 436, 2892-2906.	4.4	26
196	The Soft, Fluctuating UVB at <i>>z</i> \$\hat{i}\$ 6 as Traced by C IV, Si IV, and C II. Monthly Notices of the FAstronomical Society, 0, , stw805.	loyal	26
197	Simulation of Soft Xâ€Ray Emission Lines from the Missing Baryons. Astrophysical Journal, 2005, 623, 612-626.	4.5	26
198	Semi-analytic forecasts for <i>JWST</i> – V. AGN luminosity functions and helium reionization at <i>z</i> Â=Â2–7. Monthly Notices of the Royal Astronomical Society, 2021, 508, 2706-2729.	4.4	25

#	Article	IF	Citations
199	THE DISTRIBUTION OF SATELLITES AROUND MASSIVE GALAXIES AT 1 < <i>>z </i> >< 3 IN ZFOURGE/CANDELS: DEPENDENCE ON STAR FORMATION ACTIVITY. Astrophysical Journal, 2014, 792, 103.	4.5	24
200	The Three Hundred project: the stellar and gas profiles. Monthly Notices of the Royal Astronomical Society, 2020, 495, 2930-2948.	4.4	24
201	Photometric properties of reionization-epoch galaxies in the <scp>simba</scp> simulations. Monthly Notices of the Royal Astronomical Society, 2020, 494, 5636-5651.	4.4	24
202	The low-redshift circumgalactic medium in <scp>simba</scp> . Monthly Notices of the Royal Astronomical Society, 2021, 507, 2383-2404.	4.4	24
203	IQ-Collaboratory 1.1: The Star-forming Sequence of Simulated Central Galaxies. Astrophysical Journal, 2019, 872, 160.	4.5	23
204	Dynamic localized turbulent diffusion and its impact on the galactic ecosystem. Monthly Notices of the Royal Astronomical Society, 2019, 483, 3810-3831.	4.4	23
205	A high molecular fraction in a subdamped absorber at $z\hat{A}$ = 0.56 \hat{a} Monthly Notices of the Royal Astronomical Society, 2013, 433, 178-193.	4.4	22
206	The COS Absorption Survey of Baryon Harbors: The Galaxy Database and Cross-correlation Analysis of O vi Systems ^{â^—} . Astrophysical Journal, Supplement Series, 2019, 243, 24.	7.7	22
207	The radio galaxy population in the <scp>simba</scp> simulations. Monthly Notices of the Royal Astronomical Society, 2021, 503, 3492-3509.	4.4	22
208	Predictions of the L _[C ii] –SFR and [Cii] Luminosity Function at the Epoch of Reionization. Astrophysical Journal, 2020, 905, 102.	4.5	22
209	Tracing Molecular Gas Mass in z 3% 6 Galaxies with [C ii]. Astrophysical Journal, 2022, 929, 92.	4.5	22
210	The association between gas and galaxies - II. The two-point correlation function. Monthly Notices of the Royal Astronomical Society, 2007, 375, 735-744.	4.4	21
211	The minimum halo mass for star formation at <i>z</i> Â= 6â€"8. Monthly Notices of the Royal Astronomical Society, 2017, 464, 1633-1639.	4.4	21
212	On the Interpretation of Far-infrared Spectral Energy Distributions. I. The 850 \hat{l} 4m Molecular Mass Estimator. Astrophysical Journal, 2018, 867, 102.	4.5	21
213	Artist: fast radiative transfer for large-scale simulations of the epoch of reionization. Monthly Notices of the Royal Astronomical Society, 2019, 489, 5594-5611.	4.4	21
214	Finding Universal Relations in Subhalo Properties with Artificial Intelligence. Astrophysical Journal, 2022, 927, 85.	4.5	21
215	Measuring the Halo Mass ofzâ^¼ 3 Damped Lyα Absorbers from the Absorberâ€Galaxy Crossâ€Correlation. Astrophysical Journal, 2005, 628, 89-103.	4.5	20
216	The rise and fall of a challenger: the Bullet Cluster in \hat{i} cold dark matter simulations. Monthly Notices of the Royal Astronomical Society, 2015, 452, 3030-3037.	4.4	20

#	Article	lF	CITATIONS
217	Lyman \hat{l}_{\pm} absorption beyond the disc of simulated spiral galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 496, 152-168.	4.4	20
218	A DEEP SEARCH FOR FAINT GALAXIES ASSOCIATED WITH VERY LOW-REDSHIFT C IV ABSORBERS: A CASE WITH COLD-ACCRETION CHARACTERISTICS. Astrophysical Journal Letters, 2013, 779, L17.	8.3	19
219	A new model for including galactic winds in simulations of galaxy formation – I. Introducing the Physically Evolved Winds (PhEW) model. Monthly Notices of the Royal Astronomical Society, 2020, 497, 2586-2604.	4.4	19
220	The specific star formation rate function at different mass scales and quenching: a comparison between cosmological models and SDSS. Monthly Notices of the Royal Astronomical Society, 2020, 500, 2036-2048.	4.4	19
221	The baryonic Tully–Fisher relation in the simba simulation. Monthly Notices of the Royal Astronomical Society, 2020, 498, 3687-3702.	4.4	19
222	IQ Collaboratory. II. The Quiescent Fraction of Isolated, Low-mass Galaxies across Simulations and Observations. Astrophysical Journal, 2021, 915, 53.	4.5	19
223	Dark Molecular Gas in Simulations of zÂâ^¼Â0 Disk Galaxies. Astrophysical Journal, 2018, 869, 73.	4.5	18
224	simba: the average properties of the circumgalactic medium of 2Ââ‰æÂ≳ quasars are determined primarily by stellar feedback. Monthly Notices of the Royal Astronomical Society, 2020, 499, 2760-2784.	4.4	18
225	Pressure support versus thermal broadening in the Lyman $\hat{l}\pm$ forest - II. Effects of the equation of state on transverse structure. Monthly Notices of the Royal Astronomical Society, 2010, , .	4.4	17
226	The impact of AGN on stellar kinematics and orbits in simulated massive galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 489, 2702-2722.	4.4	17
227	The NEWFIRM HETDEX Survey: Photometric Catalog and a Conservative Sample of Massive Quiescent Galaxies at $z=3\hat{a}\in 5$ over 17.5 deg ² in the SHELA Field. Astrophysical Journal, 2021, 921, 58.	4.5	17
228	High Molecular-gas to Dust Mass Ratios Predicted in Most Quiescent Galaxies. Astrophysical Journal Letters, 2021, 922, L30.	8.3	17
229	nIFTy galaxy cluster simulations – V. Investigation of the cluster infall region. Monthly Notices of the Royal Astronomical Society, 2017, 464, 2027-2038.	4.4	16
230	Predicting the neutral hydrogen content of galaxies from optical data using machine learning. Monthly Notices of the Royal Astronomical Society, 2018, 479, 4509-4525.	4.4	16
231	The low-redshift Ly forest towards 3C 273. Monthly Notices of the Royal Astronomical Society, 2010, 405, 1736-1758.	4.4	15
232	The origin of the dust extinction curve in milky way-like galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 507, 548-559.	4.4	15
233	How Well Can We Measure Galaxy Dust Attenuation Curves? The Impact of the Assumed Star-dust Geometry Model in Spectral Energy Distribution Fitting. Astrophysical Journal, 2022, 931, 14.	4.5	15
234	Spatially resolved star formation histories of nearby galaxies: evidence for episodic star formation in discs. Monthly Notices of the Royal Astronomical Society, 2013, 431, 2622-2633.	4.4	14

#	Article	IF	CITATIONS
235	ZFIRE: THE KINEMATICS OF STAR-FORMING GALAXIES AS A FUNCTION OF ENVIRONMENT AT z $\hat{a}^1/4$ 2. Astrophysical Journal Letters, 2016, 825, L2.	8.3	14
236	ZFIRE: SIMILAR STELLAR GROWTH IN Hα-EMITTING CLUSTER AND FIELD GALAXIES AT z \hat{a}^{1} /4 2. Astrophysical Journal, 2017, 834, 101.	4.5	14
237	Aligned metal absorbers and the ultraviolet background at the end of reionization. Monthly Notices of the Royal Astronomical Society, 2018, 475, 4717-4727.	4.4	14
238	Quenching and the UVJ Diagram in the SIMBA Cosmological Simulation. Astrophysical Journal, 2022, 929, 94.	4.5	14
239	Simulating the Effects of Intergalactic Gray Dust. Astrophysical Journal, 2000, 534, L123-L126.	4.5	13
240	Probing the Metal Enrichment of the Intergalactic Medium at zÂ=Â5–6 Using the Hubble Space Telescope. Astrophysical Journal Letters, 2017, 849, L18.	8.3	13
241	The frequency of very young galaxies in the local Universe $\hat{a}\in$ II. The view from SDSS spectra. Monthly Notices of the Royal Astronomical Society, 2020, 492, 1791-1811.	4.4	13
242	The CGM at Cosmic Noon with KCWI: Outflows from a Star-forming Galaxy at zÂ=Â2.071. Astrophysical Journal, 2020, 904, 164.	4.5	13
243	CONSTRAINING VERY HIGH MASS POPULATION III STARS THROUGH He II EMISSION IN GALAXY BDF-521 AT <i>z</i> = 7.01. Astrophysical Journal Letters, 2015, 799, L19.	8.3	12
244	The robustness of cosmological hydrodynamic simulation predictions to changes in numerics and cooling physics. Monthly Notices of the Royal Astronomical Society, 2019, 484, 2021-2046.	4.4	12
245	sÃgame v3: Gas Fragmentation in Postprocessing of Cosmological Simulations for More Accurate Infrared Line Emission Modeling. Astrophysical Journal, 2021, 922, 88.	4.5	12
246	OPTICAL-FAINT, FAR-INFRARED-BRIGHT <i>HERSCHEL</i> SOURCES IN THE CANDELS FIELDS: ULTRA-LUMINOUS INFRARED GALAXIES AT <i>z</i> Astrophysical Journal, Supplement Series, 2014, 213, 2.	7.7	11
247	The BPT Diagram in Cosmological Galaxy Formation Simulations: Understanding the Physics Driving Offsets at High Redshift. Astrophysical Journal, 2022, 926, 80.	4.5	11
248	Breaking baryon-cosmology degeneracy with the electron density power spectrum. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 046.	5.4	11
249	The black hole population in low-mass galaxies in large-scale cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2022, 514, 4912-4931.	4.4	11
250	The Circumgalactic Medium from the CAMELS Simulations: Forecasting Constraints on Feedback Processes from Future Sunyaev–Zeldovich Observations. Astrophysical Journal, 2022, 933, 133.	4.5	11
251	THE CLOWES-CAMPUSANO LARGE QUASAR GROUP SURVEY. I. < i > GALEX < / i > SELECTED SAMPLE OF LYMAN BREAK GALAXIES AT < i > z < / i > â^1/4 1. Astrophysical Journal, 2009, 702, 506-522.	4.5	10
252	mufasa: the strength and evolution of galaxy conformity in various tracers. Monthly Notices of the Royal Astronomical Society, 2018, 475, 955-973.	4.4	10

#	Article	IF	Citations
253	Testing galaxy formation simulations with damped Lyman- $\hat{l}\pm$ abundance and metallicity evolution. Monthly Notices of the Royal Astronomical Society, 2020, 492, 2835-2846.	4.4	10
254	Hybrid analytic and machine-learned baryonic property insertion into galactic dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2021, 504, 4024-4038.	4.4	10
255	IQ Collaboratory. III. The Empirical Dust Attenuation Framework—Taking Hydrodynamical Simulations with a Grain of Dust. Astrophysical Journal, 2022, 926, 122.	4.5	10
256	Intergalactic dust extinction in hydrodynamic cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2010, , no-no.	4.4	9
257	mufasa: Time-scales for H iÂconsumption and SFR depletion of satellite galaxies in groups. Monthly Notices of the Royal Astronomical Society, 2019, 486, 5184-5196.	4.4	9
258	The Origin and Evolution of Lyl̂ \pm ÂBlobs in Cosmological Galaxy Formation Simulations. Astrophysical Journal, 2021, 909, 119.	4.5	9
259	Lyl $\hat{\mathbf{i}}$ t flux power spectrum and its covariance. Monthly Notices of the Royal Astronomical Society, 2005, 363, 1145-1154.	4.4	8
260	nIFTy galaxy cluster simulations VI: the dynamical imprint of substructure on gaseous cluster outskirts Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	8
261	The redshift evolution of the baryonic Tully–Fisher relation in SIMBA. Monthly Notices of the Royal Astronomical Society, 2021, 507, 3267-3284.	4.4	8
262	Bringing faint active galactic nuclei (AGNs) to light: a view from large-scale cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2021, 508, 4816-4843.	4.4	8
263	The slow flow model of dust efflux in local star-forming galaxies. Monthly Notices of the Royal Astronomical Society, 2013, 436, 1852-1866.	4.4	7
264	DEPENDENCE OF NEBULAR HEAVY-ELEMENT ABUNDANCE ON H I CONTENT FOR SPIRAL GALAXIES. Astrophysical Journal, 2013, 773, 4.	4.5	7
265	The impact of wind scalings on stellar growth and the baryon cycle in cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2020, 493, 1-28.	4.4	6
266	Reionization with Simba: How Much Does Astrophysics Matter in Modeling Cosmic Reionization?. Astrophysical Journal, 2022, 931, 62.	4.5	6
267	Using galaxy formation simulations to optimize LIGO follow-up observations. Monthly Notices of the Royal Astronomical Society, 2017, 466, 2212-2216.	4.4	5
268	AGN and star formation at cosmic noon: comparison of data to theoretical models. Monthly Notices of the Royal Astronomical Society, 2021, 508, 762-780.	4.4	5
269	A new model for including galactic winds in simulations of galaxy formation II: Implementation of PhEW in cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2021, 509, 6091-6110.	4.4	5
270	The Mass-Metallicity Relation in Cosmological Hydrodynamic Simulations. EAS Publications Series, 2007, 24, 183-189.	0.3	4

#	Article	IF	CITATIONS
271	The Flux Auto―and Cross orrelation of the Lyα Forest. II. Modeling Anisotropies with Cosmological Hydrodynamic Simulations. Astrophysical Journal, 2008, 675, 946-959.	4.5	4
272	PC 1643+4631A, B: THE LYMAN-α FOREST AT THE EDGE OF COHERENCE. Astronomical Journal, 2008, 136, 181-196.	4.7	4
273	Rapidly quenched galaxies in the <scp>Simba</scp> cosmological simulation and observations. Monthly Notices of the Royal Astronomical Society, 2022, 513, 27-41.	4.4	4
274	Detection of a Multiphase Intragroup Medium: Results from the COS-IGrM Survey. Astrophysical Journal, 2021, 923, 189.	4.5	4
275	Evidence of increased UV Fe ii emission in quasars in candidate overdense regions. Monthly Notices of the Royal Astronomical Society, 2013, 435, 3125-3132.	4.4	3
276	When Does the Intergalactic Medium Become Enriched?. EAS Publications Series, 2007, 24, 157-162.	0.3	3
277	Protoclusters at ? = 5.7: a view from the MultiDark galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 497, 5220-5228.	4.4	2
278	LYα Absorber Correlations and the "Bias―of the LYα Forest. Astrophysics and Space Science Library, 2003, , 271-276.	2.7	2
279	NUMERICAL SIMULATION OF THE SUB-MM GALAXIES. , 2001, , .		2
280	Looking at the Distant Universe with the MeerKAT Array: Discovery of a Luminous OH Megamaser at z > 0.5. Astrophysical Journal Letters, 2022, 931, L7.	8.3	2
281	The Galaxy Proximity Effect in the Lyl± Forest. AIP Conference Proceedings, 2003, , .	0.4	1
282	Simulations of early galaxy formation. New Astronomy Reviews, 2006, 50, 24-28.	12.8	1
283	Simulations of the Intergalactic Medium. Symposium - International Astronomical Union, 2005, 216, 251-265.	0.1	О
284	Rapidly Star-forming Galaxies At High Redshifts. EAS Publications Series, 2011, 52, 35-42.	0.3	0
285	Monstrous galaxies unmasked. Nature, 2015, 525, 465-466.	27.8	О
286	Probing the Baryon Cycle in Galaxy Outskirts. Proceedings of the International Astronomical Union, 2016, 11, 53-60.	0.0	0
287	Modeling dust in a universe of galaxies. Proceedings of the International Astronomical Union, 2019, 15, 44-54.	0.0	О
288	The IGM-Galaxy Connection: The Line of Sight to 3C 273. Astrophysics and Space Science Library, 2003, , 75-76.	2.7	0

#	Article	IF	CITATIONS
289	Skewering the Cosmic Web with Quasars. Astrophysics and Space Science Library, 2003, , 285-288.	2.7	O