Ran Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/854218/publications.pdf

Version: 2024-02-01

623734 713466 1,064 22 14 21 citations h-index g-index papers 1139 22 22 22 docs citations citing authors all docs times ranked

#	Article	IF	Citations
1	Self-Healing Polyurethane Elastomers Based on a Disulfide Bond by Digital Light Processing 3D Printing. ACS Macro Letters, 2019, 8, 1511-1516.	4.8	192
2	A facile access to stiff epoxy vitrimers with excellent mechanical properties <i>via</i> siloxane equilibration. Journal of Materials Chemistry A, 2018, 6, 10184-10188.	10.3	150
3	Three-Dimensional Printing of Shape Memory Composites with Epoxy-Acrylate Hybrid Photopolymer. ACS Applied Materials & Diterfaces, 2017, 9, 1820-1829.	8.0	132
4	4D printing of shape memory polyurethane via stereolithography. European Polymer Journal, 2018, 101, 120-126.	5.4	107
5	Superstretchable and Processable Silicone Elastomers by Digital Light Processing 3D Printing. ACS Applied Materials & Samp; Interfaces, 2019, 11, 14391-14398.	8.0	85
6	Four-dimensional printing of shape memory polyurethanes with high strength and recyclability based on Diels-Alder chemistry. Polymer, 2020, 200, 122532.	3.8	58
7	Digital Light Processing 4D Printing of Transparent, Strong, Highly Conductive Hydrogels. ACS Applied Materials & Samp; Interfaces, 2021, 13, 36286-36294.	8.0	52
8	Self-healing, mechanically robust, 3D printable ionogel for highly sensitive and long-term reliable ionotronics. Journal of Materials Chemistry A, 2022, 10, 12005-12015.	10.3	43
9	Silicone–Epoxyâ€Based Hybrid Photopolymers for 3D Printing. Macromolecular Chemistry and Physics, 2018, 219, 1700530.	2.2	40
10	A comparative study on 3D printed silicone-epoxy/acrylate hybrid polymers via pure photopolymerization and dual-curing mechanisms. Journal of Materials Science, 2019, 54, 5101-5111.	3.7	37
11	A self-healing polysiloxane elastomer based on siloxane equilibration synthesized through amino-ene Michael addition reaction. European Polymer Journal, 2018, 108, 399-405.	5.4	33
12	Silicon carbide whiskers reinforced SiOC ceramics through digital light processing 3D printing technology. Ceramics International, 2021, 47, 18314-18322.	4.8	29
13	Highly crosslinked and uniform thermoset epoxy microspheres: Preparation and toughening study. Polymer, 2018, 143, 145-154.	3.8	27
14	Cage–ladderâ€structure, phosphorusâ€containing polyhedral oligomeric silsesquinoxanes as promising reactiveâ€type flame retardants for epoxy resin. Journal of Applied Polymer Science, 2019, 136, 47607.	2.6	27
15	A High Strength but Fast Fractureâ€6elfâ€Healing Thermoplastic Elastomer. Macromolecular Rapid Communications, 2021, 42, e2100135.	3.9	17
16	Aliphatic siliconeâ€epoxy based hybrid photopolymers applied in stereolithography 3D printing. Polymers for Advanced Technologies, 2021, 32, 980-987.	3.2	14
17	A facile approach to prepare cageâ€ladderâ€structure phosphorusâ€containing aminoâ€functionalized <scp>POSS</scp> for enhancing flame retardancy of epoxy resins. Journal of Applied Polymer Science, 2021, 138, 49870.	2.6	9
18	Synthesis and characterization of thianthrene-based epoxy with high refractive index over 1.7. Phosphorus, Sulfur and Silicon and the Related Elements, 2018, 193, 33-40.	1.6	4

#	Article	IF	CITATION
19	Toughening Rigid Epoxy Using Novel Potassium Silanolate Ionic Interactions. Macromolecular Materials and Engineering, 2020, 305, 1900535.	3.6	4
20	Stabile, Thermoresponsive Colloidal Clusters: An Unusual Morphology of Polymer Dispersions. Macromolecular Rapid Communications, 2013, 34, 1629-1634.	3.9	3
21	Hierarchically porous silica composites via a colloidal reaction sequence. Polymer, 2017, 128, 40-46.	3.8	1
22	Borderline Particles: Approaching the Limit between Colloidal Stability and Instability during Heterophase Polymerization. Macromolecular Chemistry and Physics, 2016, 217, 901-911.	2.2	0