Spencer Klein List of Publications by Year in descending order Source: https://exaly.com/author-pdf/8541610/publications.pdf Version: 2024-02-01 104 4,495 32 papers citations h-index 104 104 104 5910 all docs docs citations times ranked citing authors 66 g-index | # | Article | IF | CITATIONS | |----|---|------|-----------| | 1 | Electron-Ion Collider: The next QCD frontier. European Physical Journal A, 2016, 52, 1. | 1.0 | 898 | | 2 | The physics of ultraperipheral collisions at the LHC. Physics Reports, 2008, 458, 1-171. | 10.3 | 425 | | 3 | PHYSICS OF ULTRA-PERIPHERAL NUCLEAR COLLISIONS. Annual Review of Nuclear and Particle Science, 2005, 55, 271-310. | 3.5 | 345 | | 4 | Exclusive vector meson production in relativistic heavy ion collisions. Physical Review C, 1999, 60, . | 1.1 | 265 | | 5 | Suppression of bremsstrahlung and pair production due to environmental factors. Reviews of Modern Physics, 1999, 71, 1501-1538. | 16.4 | 195 | | 6 | STARlight: A Monte Carlo simulation program for ultra-peripheral collisions of relativistic ions. Computer Physics Communications, 2017, 212, 258-268. | 3.0 | 188 | | 7 | Invited Review Article: IceCube: An instrument for neutrino astronomy. Review of Scientific Instruments, 2010, 81, 081101. | 0.6 | 157 | | 8 | First supermodule of the MACRO detector at Gran Sasso. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1993, 324, 337-362. | 0.7 | 137 | | 9 | Interference in Exclusive Vector Meson Production in Heavy-Ion Collisions. Physical Review Letters, 2000, 84, 2330-2333. | 2.9 | 108 | | 10 | LHC forward physics. Journal of Physics G: Nuclear and Particle Physics, 2016, 43, 110201. | 1.4 | 99 | | 11 | Coherent Vector-Meson Photoproduction with Nuclear Breakup in Relativistic Heavy-Ion Collisions. Physical Review Letters, 2002, 89, 012301. | 2.9 | 87 | | 12 | Photoproduction of Quarkonium in Proton-Proton and Nucleus-Nucleus Collisions. Physical Review Letters, 2004, 92, 142003. | 2.9 | 78 | | 13 | Milagrito, a TeV air-shower array. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2000, 449, 478-499. | 0.7 | 59 | | 14 | Two-photon interactions with nuclear breakup in relativistic heavy ion collisions. Physical Review C, 2009, 80, . | 1.1 | 56 | | 15 | Imaging the nucleus with high-energy photons. Nature Reviews Physics, 2019, 1, 662-674. | 11.9 | 55 | | 16 | Photonuclear and Two-Photon Interactions at High-Energy Nuclear Colliders. Annual Review of Nuclear and Particle Science, 2020, 70, 323-354. | 3.5 | 53 | | 17 | Multi-photon exchange processes in ultraperipheral relativistic heavy-ion collisions. Nuclear Physics A, 2003, 729, 787-808. | 0.6 | 51 | | 18 | Study of penetrating cosmic ray muons and search for large scale anisotropies at the Gran Sasso Laboratory. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1990, 249, 149-156. | 1.5 | 44 | | # | Article | IF | Citations | |----|--|-----|-----------| | 19 | Acoplanarity of a Lepton Pair to Probe the Electromagnetic Property of Quark Matter. Physical Review Letters, 2019, 122, 132301. | 2.9 | 43 | | 20 | New limit on the rate-density of evaporating black holes. Physical Review Letters, 1993, 71, 2524-2527. | 2.9 | 41 | | 21 | The Highâ€Energy Gammaâ€Ray Fluence and Energy Spectrum of GRB 970417a from Observations with Milagrito. Astrophysical Journal, 2003, 583, 824-832. | 1.6 | 41 | | 22 | Heavy quark photoproduction in ultraperipheral heavy ion collisions. Physical Review C, 2002, 66, . | 1.1 | 40 | | 23 | Searches for new quarks and leptons produced in Z-boson decay. Physical Review Letters, 1989, 63, 2447-2451. | 2.9 | 39 | | 24 | A prototype station for ARIANNA: A detector for cosmic neutrinos. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 624, 85-91. | 0.7 | 38 | | 25 | Study of the ultrahigh-energy primary-cosmic-ray composition with the MACRO experiment. Physical Review D, 1992, 46, 895-902. | 1.6 | 37 | | 26 | Lepton pair production through two photon process in heavy ion collisions. Physical Review D, 2020, 102 , . | 1.6 | 37 | | 27 | Localized beampipe heating due to eâ°' capture and nuclear excitation in heavy ion colliders. Nuclear
Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment, 2001, 459, 51-57. | 0.7 | 36 | | 28 | Electron and photon interactions in the regime of strong Landau-Pomeranchuk-Migdal suppression. Physical Review D, 2010, 82, . | 1.6 | 36 | | 29 | Two-photon production of dilepton pairs in peripheral heavy ion collisions. Physical Review C, 2018, 97, . | 1.1 | 35 | | 30 | Study of the primary cosmic ray composition around the knee of the energy spectrum. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1994, 337, 376-382. | 1.5 | 34 | | 31 | Pseudorapidity asymmetry and centrality dependence of charged hadron spectra in d+Au collisions at sNN=200GeV. Physical Review C, 2004, 70, . | 1.1 | 34 | | 32 | Graph Neural Networks for IceCube Signal Classification. , 2018, , . | | 33 | | 33 | Search for nuclearites using the MACRO detector. Physical Review Letters, 1992, 69, 1860-1863. | 2.9 | 32 | | 34 | Exclusive vector meson production at an electron-ion collider. Physical Review C, 2019, 99, . | 1.1 | 30 | | 35 | Measurement of the decoherence function with the MACRO detector at Gran Sasso. Physical Review D, 1992, 46, 4836-4845. | 1.6 | 29 | | 36 | Search for slowly moving magnetic monopoles with the MACRO detector. Physical Review Letters, 1994, 72, 608-612. | 2.9 | 29 | | # | Article | IF | Citations | |----|---|-----|-----------| | 37 | Muon astronomy with the MACRO detector. Astrophysical Journal, 1993, 412, 301. | 1.6 | 28 | | 38 | Search for neutrino bursts from collapsing stars with the MACRO detector. Astroparticle Physics, 1992, 1, 11-25. | 1.9 | 25 | | 39 | Pair production from 10 GeV to 10 ZeV. Radiation Physics and Chemistry, 2006, 75, 696-711. | 1.4 | 25 | | 40 | Astronomy and astrophysics with neutrinos. Physics Today, 2008, 61, 29-35. | 0.3 | 25 | | 41 | MUON ACCELERATION IN COSMIC-RAY SOURCES. Astrophysical Journal, 2013, 779, 106. | 1.6 | 24 | | 42 | Prompt D0, D+, and D*+ production in Pbâ \in "Pb collisions at \$\$ sqrt{s_{mathrm{NN}}} \$\$ = 5.02 TeV. Journal of High Energy Physics, 2022, 2022, 1. | 1.6 | 23 | | 43 | Improvements in the CR39 polymer for the macro experiment at the Gran Sasso Laboratory.
International Journal of Radiation Applications and Instrumentation Part D, Nuclear Tracks and
Radiation Measurements, 1991, 19, 641-646. | 0.6 | 22 | | 44 | A full-acceptance detector at the LHC (FELIX). Journal of Physics G: Nuclear and Particle Physics, 2002, 28, R117-R215. | 1.4 | 22 | | 45 | Simultaneous observation of extensive air showers and deep-underground muons at the Gran Sasso Laboratory. Physical Review D, 1990, 42, 1396-1403. | 1.6 | 19 | | 46 | Radar absorption, basal reflection, thickness and polarization measurements from the Ross Ice Shelf, Antarctica. Journal of Glaciology, 2015, 61, 438-446. | 1,1 | 19 | | 47 | Photoproduction of charged final states in ultraperipheral collisions and electroproduction at an electron-ion collider. Physical Review C, 2019, 100, . | 1.1 | 19 | | 48 | Coherent \$\$mathrm{J}/psi \$\$Âand \$\${uppsi '}\$\$Âphotoproduction at midrapidity in ultra-peripheral Pb–Pb Âcollisions at \$\$sqrt{s_{mathrm {NN}}}~=~5.02\$\$ÂTeV. European Physical Journal C, 2021, 81, 1. | 1.4 | 18 | | 49 | IceCube: A Cubic Kilometer Radiation Detector. IEEE Transactions on Nuclear Science, 2009, 56, 1141-1147. | 1.2 | 16 | | 50 | Ultra-peripheral collisions and hadronic structure. Nuclear Physics A, 2017, 967, 249-256. | 0.6 | 16 | | 51 | Arrival time distributions of very high energy cosmic ray muons in MACRO. Nuclear Physics B, 1992, 370, 432-444. | 0.9 | 14 | | 52 | High energy cosmic-ray interactions with particles from the Sun. Physical Review D, 2011, 83, . | 1.6 | 13 | | 53 | Daily search for emission of ultra-high-energy radiation from point sources. Astrophysical Journal, 1993, 405, 353. | 1.6 | 13 | | 54 | A Search for Ultra–High-Energy Gamma-Ray Emission from Five Supernova Remnants. Astrophysical Journal, 1995, 448, . | 1.6 | 12 | | # | Article | IF | CITATIONS | |----|--|-----------------|-----------| | 55 | A Radio Detector Array for Cosmic Neutrinos on the Ross Ice Shelf. IEEE Transactions on Nuclear Science, 2013, 60, 637-643. | 1.2 | 12 | | 56 | Production of pions, kaons, (anti-)protons and \$\$phi \$\$ mesons in Xe–Xe collisions at \$\$sqrt{s_{mathrm{NN}}}\$\$Â=Â5.44 TeV. European Physical Journal C, 2021, 81, 1. | 1.4 | 12 | | 57 | Search for Emission of UltraHigh-Energy Radiation from Active Galactic Nuclei. Astrophysical Journal, 1993, 418, 832. | 1.6 | 12 | | 58 | Coherent <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mi>i</mml:mi><mml:mn>0</mml:mn></mml:msup></mml:math> Photoprod in Bulk Matter at High Energies. Physical Review Letters, 2009, 103, 062504. | u czi on | 11 | | 59 | A new contribution to the conventional atmospheric neutrino flux. Astroparticle Physics, 2015, 64, 13-17. | 1.9 | 11 | | 60 | Nuclear effects in high-energy neutrino interactions. Physical Review C, 2020, 102, . | 1.1 | 11 | | 61 | Coherent photoproduction of \tilde{I}_0 vector mesons in ultra-peripheral Pb-Pb collisions at \$\$ sqrt{{mathrm{s}}_{mathrm{NN}}} \$\$ = 5.02 TeV. Journal of High Energy Physics, 2020, 2020, 1. | 1.6 | 11 | | 62 | Does particle decay cause wave function collapse: anÂexperimental test. Physics Letters, Section A: General, Atomic and Solid State Physics, 2003, 308, 323-328. | 0.9 | 10 | | 63 | Deuteron photodissociation in ultraperipheral relativistic heavy-ion on deuteron collisions. Physical Review C, 2003, 68, . | 1.1 | 8 | | 64 | Comment on " ηc production in photon-induced interactions at the LHC― Physical Review D, 2018, 98, . | 1.6 | 8 | | 65 | Cherenkov radiation frome+eâ^'pairs and its effect onl̂½einduced showers. Physical Review D, 2005, 72, . | 1.6 | 7 | | 66 | Muon Production in Relativistic Cosmic-Ray Interactions. Nuclear Physics A, 2009, 830, 869c-872c. | 0.6 | 7 | | 67 | Supersymmetric and Kaluza-Klein particles multiple scattering in the Earth. Physical Review D, 2009, 80, | 1.6 | 7 | | 68 | Heavy ion beam loss mechanisms at an electron-ion collider. Physical Review Special Topics: Accelerators and Beams, 2014, 17, . | 1.8 | 7 | | 69 | Audiofrequency measurement of JFET noise versus temperature in a highâ€impedance preamplifier. Review of Scientific Instruments, 1985, 56, 1941-1945. | 0.6 | 6 | | 70 | Rotor electrometer: New instrument for bulk matter quark search experiments. Review of Scientific Instruments, 1986, 57, 2691-2698. | 0.6 | 6 | | 71 | Heavy nuclei, from RHIC to the cosmos. Nuclear Physics, Section B, Proceedings Supplements, 2003, 122, 76-85. | 0.5 | 5 | | 72 | Radiodetection of Neutrinos. Nuclear Physics, Section B, Proceedings Supplements, 2012, 229-232, 284-288. | 0.5 | 5 | | # | Article | IF | CITATIONS | |----|---|------|-----------| | 73 | Double neutrino production and detection in neutrino detectors. Physical Review D, 2013, 88, . | 1.6 | 5 | | 74 | Ultraperipheral nuclear collisions. Physics Today, 2017, 70, 40-47. | 0.3 | 5 | | 75 | A clash of photons. Nature Physics, 2017, 13, 827-828. | 6.5 | 4 | | 76 | First Results from IceCube. AIP Conference Proceedings, 2006, , . | 0.3 | 3 | | 77 | Studying High pT Muons in Cosmic-Ray Air Showers. Nuclear Physics, Section B, Proceedings Supplements, 2008, 175-176, 346-349. | 0.5 | 3 | | 78 | A multiplexed 200 MSPS waveform digitizer with zero suppression for MACRO. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1991, 309, 536-544. | 0.7 | 2 | | 79 | Bremsstrahlung and pair creation: Suppression mechanisms and how they affect EHE air showers. ,
1998, , . | | 2 | | 80 | Recentvs from IceCube. Journal of Physics: Conference Series, 2008, 136, 022050. | 0.3 | 2 | | 81 | Couderc and Klein Reply:. Physical Review Letters, 2009, 103, . | 2.9 | 2 | | 82 | Recent Highlights from IceCube. Brazilian Journal of Physics, 2014, 44, 540-549. | 0.7 | 2 | | 83 | Physics: Invest in neutrino astronomy. Nature, 2016, 533, 462-464. | 13.7 | 2 | | 84 | Dipion photoproduction and the Q^2 evolution of the shape of gold nuclei., 2018,,. | | 2 | | 85 | Backward-angle (| | | | # | Article | IF | CITATIONS | |-----|---|-----|-----------| | 91 | Using coherent dipion photoproduction to image gold nuclei. SciPost Physics Proceedings, 2022, , . | 0.2 | 1 | | 92 | Status report of the macro experiment at gran sasso. Nuclear Physics, Section B, Proceedings Supplements, 1990, 13, 368-371. | 0.5 | 0 | | 93 | First results from the MACRO detector at the Gran Sasso Laboratory. Nuclear Physics, Section B, Proceedings Supplements, 1990, 16, 486-487. | 0.5 | 0 | | 94 | TEXAS: a calorimeter-based high-rate detector for the SSC. Nuclear Instruments & Methods in Physics Research B, 1991, 56-57, 948-951. | 0.6 | 0 | | 95 | First results from the MACRO experiment at the Gran Sasso Laboratory. Nuclear Physics, Section B, Proceedings Supplements, 1991, 19, 128-137. | 0.5 | 0 | | 96 | Cosmic ray search for strange quark matter with the macro detector. Nuclear Physics, Section B, Proceedings Supplements, 1991, 24, 191-194. | 0.5 | 0 | | 97 | Search for stellar gravitational collapse by MACRO: Characteristics and results. Nuclear Physics, Section B, Proceedings Supplements, 1992, 28, 61-64. | 0.5 | 0 | | 98 | Measurement of electromagnetic and TEV muon components of extensive air showers by eas-top and MACRO experiments. Nuclear Physics, Section B, Proceedings Supplements, 1992, 28, 393-396. | 0.5 | 0 | | 99 | Photoproduction at Hadron Colliders. AIP Conference Proceedings, 2005, , . | 0.3 | 0 | | 100 | INTRODUCTION TO THE SALSA, A SALTDOME SHOWER ARRAY AS A GZK NEUTRINO OBSERVATORY. International Journal of Modern Physics A, 2006, 21, 252-253. | 0.5 | 0 | | 101 | The polar particle hunter. IEEE Spectrum, 2011, 48, 42-47. | 0.5 | 0 | | 102 | Particle interactions in matter at the terascale: The cosmic-ray experience. Nuclear Instruments & Methods in Physics Research B, 2013, 315, 14-20. | 0.6 | 0 | | 103 | Adventures in Antarctic Computing, or How I Learned to Stop Worrying and Love the Neutrino. Computer, 2014, 47, 56-61. | 1.2 | 0 | | 104 | sPHENIX Collaboration. Nuclear Physics A, 2017, 967, 1004-1006. | 0.6 | 0 |