Rui M Almeida

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8541575/publications.pdf

Version: 2024-02-01

178 papers 5,682 citations

38 h-index 95266 68 g-index

184 all docs

184 docs citations

times ranked

184

4735 citing authors

#	Article	IF	CITATIONS
1	Structure and properties of Er and Er/Yb-doped YF3 up-conversion phosphors compared with oxide hosts through an internal standard. Materials Today Communications, 2022, 31, 103239.	1.9	3
2	Optical spectroscopy methods for the characterization of sol–gel materials. Journal of Sol-Gel Science and Technology, 2021, 100, 1-43.	2.4	3
3	Up-conversion enhancement in Er3+/ Yb3+ doped 1-D microcavity based on alternating aluminosilicate glass and titania sol-gel layers. Ceramics International, 2020, 46, 26273-26281.	4.8	7
4	Frequency conversion in lanthanide-doped sol-gel derived materials for energy applications. Journal of Sol-Gel Science and Technology, 2020, 95, 520-529.	2.4	9
5	One-dimensional multilayer photonic crystals. , 2020, , 75-94.		1
6	Structural and optical studies of aluminosilicate films doped with (Tb3+, Er3+)/Yb3+ by ion implantation. Nuclear Instruments & Methods in Physics Research B, 2019, 459, 71-75.	1.4	4
7	Up-conversion emission of aluminosilicate and titania films doped with Er3+/Yb3+ by ion implantation and sol-gel solution doping. Surface and Coatings Technology, 2018, 355, 162-168.	4.8	14
8	Tb3+/Yb3+ doped aluminosilicate phosphors for near infrared emission and efficient down-conversion. Journal of Luminescence, 2018, 197, 180-186.	3.1	24
9	Solâ€Gel Processing of Sulfide Materials. , 2018, , 403-428.		2
10	Photonic crystal assisted up-converter based on Tb3+ / Yb3+ - Doped aluminosilicate glass. Optical Materials, 2018, 83, 61-67.	3 . 6	10
11	Characterization of Sol-Gel Materials by Infrared Spectroscopy. , 2018, , 1121-1151.		5
12	Sol–gel-derived Yb:YAG polycrystalline ceramics for laser applications. Journal of Sol-Gel Science and Technology, 2017, 83, 436-446.	2.4	7
13	Heavily Yb-doped silicate glass thick films. Journal of Sol-Gel Science and Technology, 2017, 81, 105-113.	2.4	7
14	Sol-Gel Derived Active Material for Yb Thin-Disk Lasers. Materials, 2017, 10, 1020.	2.9	2
15	Efficiency enhancement in solid state dye sensitized solar cells by including inverse opals with controlled layer thicknesses. Photonics and Nanostructures - Fundamentals and Applications, 2016, 21, 13-18.	2.0	9
16	Lowâ€Energy Ionâ€Scattering Spectroscopy of Modified Silicate Glasses. Journal of the American Ceramic Society, 2016, 99, 1259-1265.	3.8	9
17	Morphological Design of Gold Nanopillar Arrays and Their Optical Properties. Journal of Physical Chemistry C, 2016, 120, 1178-1185.	3.1	11
18	Sol–Gel Processing of Sulfide Materials. , 2016, , 1-26.		2

#	Article	IF	CITATIONS
19	Characterization of Sol–Gel Materials by Infrared Spectroscopy. , 2016, , 1-31.		2
20	A unified in vitro evaluation for apatite-forming ability of bioactive glasses and their variants. Journal of Materials Science: Materials in Medicine, 2015, 26, 115.	3.6	275
21	Germanosilicate glass–ceramics for non-linear optics. Journal of Materials Science, 2015, 50, 3477-3484.	3.7	4
22	Erbium-Doped Tin-Silicate Sol–Gel-Derived Glass-Ceramic Thin Films: Effect of Environment Segregation on the Er ³⁺ Emission. Science of Advanced Materials, 2015, 7, 301-308.	0.7	19
23	Quasi-omnidirectional total light absorption in nanostructured gold surfaces. Optical Materials Express, 2014, 4, 1236.	3.0	11
24	Crystallization of Solgelâ€Derived Glasses. International Journal of Applied Glass Science, 2014, 5, 114-125.	2.0	10
25	Quasi-total omnidirectional light absorption in nanostructured gold films. Applied Physics A: Materials Science and Processing, 2014, 117, 471-475.	2.3	2
26	Low-Energy Ion Scattering spectroscopy of silicate glass surfaces. Journal of Non-Crystalline Solids, 2014, 385, 124-128.	3.1	13
27	Growth of lanthanide-doped YF3 thin films by pulsed liquid injection MOCVD: Influence of deposition parameters on film microstructure. Surface and Coatings Technology, 2013, 230, 22-27.	4.8	6
28	Nanostructured glass coatings for solar control with photocatalytic properties. Journal of Non-Crystalline Solids, 2013, 377, 250-253.	3.1	9
29	Local structure around Er3+ in GeO2–TeO2–Nb2O5–K2O glasses and glass-ceramics. Journal of Non-Crystalline Solids, 2013, 377, 129-136.	3.1	15
30	Optical and spectroscopic properties of rare earth-doped (80â^'x)TeO2â€"xGeO2â€"10Nb2O5â€"10K2O glasses. Journal of Luminescence, 2013, 134, 284-296.	3.1	27
31	Adjustable YAG : Ce ³⁺ photoluminescence from photonic crystal microcavity. Journal Physics D: Applied Physics, 2013, 46, 165102.	2.8	9
32	Silica/Ormosil SPIONs for Biomedical Applications. Current Nanoscience, 2013, 9, 599-608.	1.2	11
33	Preparation and optical properties of sol–gel derived thick YAG:Ce3+ phosphor film. Optical Materials, 2012, 34, 1148-1154.	3.6	24
34	Elimination of porosity in heavily rare-earth doped sol–gel derived silicate glass films. Journal of Sol-Gel Science and Technology, 2012, 61, 332-339.	2.4	5
35	Optical and spectroscopic properties of germanotellurite glasses. Journal of Non-Crystalline Solids, 2011, 357, 2695-2701.	3.1	56
36	Sol–gel derived photonic bandgap coatings for solar control. Optical Materials, 2011, 33, 1867-1871.	3.6	11

3

#	Article	IF	CITATIONS
37	Evaluation of 3D nano–macro porous bioactive glass scaffold for hard tissue engineering. Journal of Materials Science: Materials in Medicine, 2011, 22, 1195-1203.	3.6	41
38	Bioactive sol–gel scaffolds with dual porosity for tissue engineering. Journal of Sol-Gel Science and Technology, 2011, 57, 336-342.	2.4	29
39	Flexible photonic crystals for strain sensing. Optical Materials, 2011, 33, 408-412.	3.6	36
40	Simultaneous broadening and enhancement of the $1.5\hat{A}^{1/4}$ m photoluminescence peak of Er3+ ions embedded in a 1-D photonic crystal microcavity. Applied Physics B: Lasers and Optics, 2010, 98, 809-814.	2.2	11
41	Photoluminescence in Er3+/Yb3+-doped silica-titania inverse opal structures. Journal of Sol-Gel Science and Technology, 2010, 55, 52-58.	2.4	17
42	Crystallization of niobium germanosilicate glasses. Journal of Solid State Chemistry, 2010, 183, 128-135.	2.9	17
43	Monolithic Glass Scaffolds with Dual Porosity Prepared by Polymerâ€Induced Phase Separation and Sol–Gel. Journal of the American Ceramic Society, 2010, 93, 1945-1949.	3.8	8
44	Optical and spectroscopic properties of Er-doped niobium germanosilicate glasses and glass ceramics. Journal of Non-Crystalline Solids, 2010, 356, 2677-2682.	3.1	18
45	Photoluminescence from a Tb-doped photonic crystal microcavity for white light generation. Journal Physics D: Applied Physics, 2010, 43, 455101.	2.8	19
46	Sol-gel-derived glass scaffold with high pore interconnectivity and enhanced bioactivity. Journal of Materials Research, 2009, 24, 3495-3502.	2.6	29
47	Rare earth-doped photonic crystals via sol–gel. Journal of Materials Science: Materials in Electronics, 2009, 20, 307-311.	2.2	11
48	Nano/macroporous monolithic scaffolds prepared by the sol–gel method. Journal of Sol-Gel Science and Technology, 2009, 51, 42-47.	2.4	17
49	Structure of Na ₂ O–CaO–P ₂ O ₅ –SiO ₂ Glass–Ceramic with Multimodal Porosity. Journal of the American Ceramic Society, 2009, 92, 249-252.	2S 3.8	24
50	3-D rare earth-doped colloidal photonic crystals. Optical Materials, 2009, 31, 1315-1318.	3.6	31
51	Morphological and optical properties of silicon thin films by PLD. Applied Surface Science, 2009, 255, 5299-5302.	6.1	9
52	Processing optimization and optical properties of 3-D photonic crystals. Journal of Non-Crystalline Solids, 2009, 355, 1189-1192.	3.1	18
53	An alternative method to obtain direct opal photonic crystal structures. Journal of Non-Crystalline Solids, 2009, 355, 1167-1170.	3.1	43
54	Optical and spectroscopic characterization of germanium selenide glass films. Journal of Non-Crystalline Solids, 2009, 355, 1984-1988.	3.1	15

#	Article	IF	Citations
55	High quality factor Er-doped Fabry–Perot microcavities by sol–gel processing. Journal Physics D: Applied Physics, 2009, 42, 205104.	2.8	32
56	Coatings made by sol–gel and chemical nanotechnology. Journal of Sol-Gel Science and Technology, 2008, 47, 203-236.	2.4	77
57	The potential of ion exchange in sol–gel derived photonic materials and structures. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 149, 118-122.	3.5	10
58	EXAFS study of the Er3+ ion coordination in SiO2–TiO2–HfO2 sol–gel films. Journal of Non-Crystalline Solids, 2008, 354, 4940-4943.	3.1	5
59	Rare-earth doped photonic crystal microcavities prepared by sol–gel. Journal of Non-Crystalline Solids, 2007, 353, 490-493.	3.1	25
60	Design of photonic structures by sol–gel-derived silica nanospheres. Journal of Non-Crystalline Solids, 2007, 353, 674-678.	3.1	69
61	Vibrational spectroscopy study of niobium germanosilicate glasses. Journal of Non-Crystalline Solids, 2007, 353, 1875-1881.	3.1	40
62	Structural heterogeneity in chalcogenide glass films prepared by thermal evaporation. Journal of Non-Crystalline Solids, 2007, 353, 2066-2068.	3.1	19
63	A model for the Ge–O coordination in germanate glasses. Journal of Non-Crystalline Solids, 2007, 353, 1688-1694.	3.1	40
64	Er photoluminescence enhancement in Ag-doped sol–gel planar waveguides. Journal of Non-Crystalline Solids, 2007, 353, 2613-2618.	3.1	33
65	Geâ^'O Coordination in Cesium Germanate Glasses. Journal of Physical Chemistry B, 2007, 111, 3342-3354.	2.6	44
66	Process optimization of sol–gel derived colloidal photonic crystals. Journal of Sol-Gel Science and Technology, 2007, 42, 135-143.	2.4	20
67	Er3+-activated silica inverse opals synthesized by the solgel method. Optoelectronics Letters, 2007, 3, 184-187.	0.8	5
68	Er3+ ion dispersion in tellurium oxychloride glasses. Optical Materials, 2007, 29, 503-509.	3.6	38
69	The effects of ZnCl2 and ErCl3 on the vibrational spectra and structure of tellurite glasses. Journal of Non-Crystalline Solids, 2006, 352, 690-694.	3.1	16
70	Rare-earth photoluminescence in sol–gel derived confined glass structures. Journal of Non-Crystalline Solids, 2006, 352, 475-482.	3.1	18
71	Analysis of sol–gel silica–titania films doped with Ag and Er using artificial neural networks. Nuclear Instruments & Methods in Physics Research B, 2006, 249, 804-807.	1.4	3
72	Raman spectra and structure of multicomponent oxide planar waveguides prepared by sol-gel. Journal of Sol-Gel Science and Technology, 2006, 40, 371-378.	2.4	10

#	Article	IF	Citations
73	Spectroscopic assessment of rare-earth activated planar waveguides and microcavities. Applied Surface Science, 2005, 248, 3-7.	6.1	6
74	Stability of erbium and silver implanted in silica–titania sol–gel films. Nuclear Instruments & Methods in Physics Research B, 2005, 240, 415-419.	1.4	4
75	Glassy and nanocrystalline photonic materials and structures by sol–gel. Optical Materials, 2005, 27, 1718-1725.	3.6	19
76	Self-absorption and radiation trapping in Er 3 + -doped TeO 2 -based glasses. Europhysics Letters, 2005, 71, 394-399.	2.0	59
77	Fiber-Optic Probes for in Vivo Raman Spectroscopy in the High-Wavenumber Region. Analytical Chemistry, 2005, 77, 6747-6752.	6.5	122
78	Study of silica–titania films doped with Er and Ag by RBS and ERDA. Nuclear Instruments & Methods in Physics Research B, 2004, 219-220, 923-927.	1.4	5
79	Compositional Profiles in Silica-Based Sol-Gel Films Doped with Erbium and Silver, by RBS and ERDA. Journal of Sol-Gel Science and Technology, 2004, 31, 287-291.	2.4	7
80	Photoluminescence of Erbium-Doped Silicate Sol-Gel Planar Waveguides. Journal of Sol-Gel Science and Technology, 2004, 31, 317-322.	2.4	15
81	Variable incidence infrared absorption spectroscopy of gel-derived silica and titania films. Physica Status Solidi A, 2004, 201, 2941-2947.	1.7	10
82	Rare-earth-doped Fabry-Perot microcavities by sol-gel processing. , 2004, , .		5
83	Active Nanocrystals in Erbium-Doped Silica-Titania Sol-Gel Films. Materials Science Forum, 2004, 455-456, 545-549.	0.3	3
84	Nucleation and Crystallization of Titania Nanoparticles in Silica Titania Planar Waveguides: a Study by Low Frequency Raman Scattering. Materials Science Forum, 2004, 455-456, 520-526.	0.3	3
85	On a qualitative model for the incorporation of fluoride nano-crystals within an oxide glass network in oxy-fluoride glass-ceramics. Journal of Non-Crystalline Solids, 2004, 337, 191-195.	3.1	18
86	Sol–gel photonic bandgap materials and structures. Journal of Non-Crystalline Solids, 2004, 345-346, 562-569.	3.1	36
87	Influence of Er3+ on the early stages of crystallization of chloro-tellurite glasses studied by XRD and EXAFS. Journal of Non-Crystalline Solids, 2004, 348, 11-16.	3.1	7
88	Optical Nanocomposite Planar Waveguides Doped with Rare-Earth and Noble Metal Elements. Journal of Sol-Gel Science and Technology, 2003, 26, 891-896.	2.4	26
89	Er3+-doped tellurite waveguides deposited by excimer laser ablation. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2003, 105, 65-69.	3.5	28

#	Article	IF	CITATIONS
91	Preparation and characterization of Er3+-doped TeO2-based oxyhalide glasses. Journal of Non-Crystalline Solids, 2003, 324, 150-158.	3.1	39
92	Photonic bandgap materials and structures by sol–gel processing. Journal of Non-Crystalline Solids, 2003, 326-327, 405-409.	3.1	68
93	Photonic band gap structures by sol–gel processing. Current Opinion in Solid State and Materials Science, 2003, 7, 151-157.	11.5	88
94	The structure of Er 3+ -doped oxy-fluoride transparent glass-ceramics studied by Raman scattering. Europhysics Letters, 2003, 64, 529-535.	2.0	20
95	Erbium/Ytterbium-activated silica-titania planar and channel waveguides prepared by rf-sputtering., 2003,,.		2
96	Planar waveguides for integrated optics prepared by sol–gel methods. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2002, 82, 707-719.	0.6	6
97	Planar waveguides for integrated optics prepared by sol-gel methods. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2002, 82, 707-719.	0.6	12
98	<title>Sol-gel preparation of one-dimensional photonic bandgap structures</title> ., 2002, , .		10
99	Physical and Spectroscopic Characterisation of Active Nanocrystals in Erbium-Doped Silica-Titania Sol-Gel Films. Key Engineering Materials, 2002, 230-232, 644-647.	0.4	3
100	Local Er(iii) environment in luminescent titanosilicates prepared from microporous precursorsElectronic supplementary information (ESI) available: Er LIII-edge k3-weighted EXAFS spectra and Fourier transforms. See http://www.rsc.org/suppdata/jm/b1/b107136j/. Journal of Materials Chemistry, 2002, 12, 1162-1168.	6.7	21
101	Structure of inorganic and hybrid SiO2 sol–gel coatings studied by variable incidence infrared spectroscopy. Journal of Non-Crystalline Solids, 2002, 298, 219-225.	3.1	71
102	Rare-earth-doped transparent glass ceramics. Comptes Rendus Chimie, 2002, 5, 845-854.	0.5	200
103	X-ray photoelectron spectroscopy of alkali germanate glasses. Surface and Interface Analysis, 2002, 34, 324-327.	1.8	13
104	Structural anomaly in sodium germanate glasses by molecular dynamics simulation. Journal of Non-Crystalline Solids, 2001, 281, 152-161.	3.1	16
105	Raman spectra and structure of fluoroaluminophosphate glasses. Journal of Non-Crystalline Solids, 2001, 284, 43-48.	3.1	44
106	On the origin of the Boson peak in the Raman scattering spectrum of As2S3 glass. Journal of Non-Crystalline Solids, 2001, 284, 198-202.	3.1	17
107	Local order around Er3+ ions in SiO2–TiO2–Al2O3 glassy films studied by EXAFS. Journal of Non-Crystalline Solids, 2001, 293-295, 118-124.	3.1	29
108	Vibrational spectra and structure of alkali germanate glasses. Journal of Non-Crystalline Solids, 2001, 293-295, 394-401.	3.1	110

#	Article	IF	Citations
109	Phase separation in SiO ₂ â€"TiO ₂ gel and glassy films studied by atomic force microscopy and transmission electron microscopy. Journal of Materials Research, 2001, 16, 1626-1631.	2.6	3
110	Local environment of rare-earth dopants in silica–titania–alumina glasses: An extended x-ray absorption fine structure study at the K edges of Er and Yb. Applied Physics Letters, 2001, 78, 2676-2678.	3.3	29
111	Densification of hybrid silica–titania sol–gel films studied by ellipsometry and FTIR. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 76, 193-199.	3.5	74
112	Sol–gel derived germanium sulfide planar waveguides. Materials Science in Semiconductor Processing, 2000, 3, 339-344.	4.0	13
113	Sintering Anomaly in Silica-Titania Sol-Gel Films. Journal of Sol-Gel Science and Technology, 2000, 19, 651-655.	2.4	26
114	Preparation and Characterization of Germanium Sulfide Based Sol-Gel Planar Waveguides. Journal of Sol-Gel Science and Technology, 2000, 19, 243-248.	2.4	35
115	Crystallization of SiO2–TiO2 glassy films studied by atomic force microscopy. Journal of Non-Crystalline Solids, 2000, 274, 169-174.	3.1	28
116	Paramagnetic sites in alkali germanate glasses. Journal of Non-Crystalline Solids, 2000, 278, 19-23.	3.1	10
117	<title>Sulfide glass optical waveguides prepared by sol-gel processing</title> ., 2000,,.		6
118	Photoluminescence of new Er3+-doped titanosilicate materials. Journal of Materials Chemistry, 2000, 10, 1371-1375.	6.7	34
119	Sol–gel silica/titania-on-silicon Er/Yb-doped waveguides for optical amplification at 1.5 μm. Optical Materials, 1999, 12, 1-18.	3. 6	263
120	Er3+-doped Multicomponent Silicate Glass Planar Waveguides Prepared by Sol-Gel Processing. Journal of Sol-Gel Science and Technology, 1999, 14, 209-216.	2.4	57
121	Physical vapor deposition of rare-earth doped ZrF4-based glass planar waveguides. Journal of Non-Crystalline Solids, 1999, 256-257, 194-199.	3.1	3
122	Sol–gel processing of germanium sulfide based films. Journal of Non-Crystalline Solids, 1999, 256-257, 25-30.	3.1	21
123	Sol–gel planar waveguides for integrated optics. Journal of Non-Crystalline Solids, 1999, 259, 176-181.	3.1	56
124	Spectroscopy and Structure of Sol-Gel Systems. Journal of Sol-Gel Science and Technology, 1998, 13, 51-59.	2.4	43
125	Short and medium range order in zinc halide based glasses. Journal of Non-Crystalline Solids, 1998, 232-234, 638-643.	3.1	6
126	XPS and NEXAFS studies of rare-earth doped amorphous sol–gel films. Journal of Non-Crystalline Solids, 1998, 232-234, 65-71.	3.1	58

#	Article	IF	Citations
127	<title>Optical loss mechanisms in nanocomposite sol-gel planar waveguides</title> ., 1997, 3136, 296.		31
128	Sol-gel technologies in thin film fabrication for integrated optics lasers and amplifiers., 1997, 10290, 172.		0
129	Rare earth doped fluorozirconate glass films. Journal of Non-Crystalline Solids, 1997, 213-214, 251-255.	3.1	2
130	Polarized infrared reflectivity of fluorozirconate glasses. Journal of Non-Crystalline Solids, 1997, 213-214, 184-188.	3.1	0
131	Structural study of SiO2î—,TiO2 solâ€"gel films by X-ray absorption and photoemission spectroscopies. Journal of Non-Crystalline Solids, 1997, 217, 155-161.	3.1	40
132	Title is missing!. Journal of Sol-Gel Science and Technology, 1997, 8, 377-380.	2.4	18
133	Effects of thermal treatment on the structure and properties of SiO2â^TiO2 gel films on silicon substrates. Journal of Sol-Gel Science and Technology, 1997, 8, 377-380.	2.4	16
134	Crystallization behavior of SiO2â^TiO2 sol-gel thin films. Journal of Sol-Gel Science and Technology, 1997, 8, 409-413.	2.4	24
135	Incorporation of OH species in fluorozirconate glasses: nature and influence on physical properties. Journal of Non-Crystalline Solids, 1996, 194, 180-190.	3.1	9
136	Vibrational spectra and structure of heavy metal oxide glasses. Journal of Non-Crystalline Solids, 1996, 202, 233-240.	3.1	226
137	Influence of the modifying cations on physical properties of fluorozirconate glasses. Materials Research Bulletin, 1996, 31, 573-580.	5.2	1
138	Comment on "Infrared-reflectance spectra of heat-treated, sol-gel-derived silica". Physical Review B, 1996, 53, 14656-14658.	3.2	16
139	Sintering kinetics of silica-titania sol-gel films on silicon wafers. Journal of Materials Research, 1996, 11, 353-357.	2.6	38
140	Influence of the wettability of silicon substrates on the thickness of sol-gel silica films. Journal of Materials Science, 1995, 30, 3893-3896.	3.7	12
141	Striation-Free, Spin-Coated Sol-Gel Optical Films. Journal of the American Ceramic Society, 1995, 78, 2254-2256.	3.8	40
142	Preparation and characterization of amorphous ZrF4 thin films. Journal of Non-Crystalline Solids, 1995, 184, 93-97.	3.1	7
143	Relationship between infrared absorption and porosity in silica-based sol-gel films. , 1994, 2288, 678.		17
144	Silica-based sol-gel films doped with active elements. Journal of Sol-Gel Science and Technology, 1994, 2, 465-467.	2.4	23

#	Article	IF	CITATIONS
145	EXAFS study of Ba and La structural environments in fluorozirconate glasses. Journal of Non-Crystalline Solids, 1994, 168, 144-149.	3.1	13
146	Vibrational spectra and structure of fluoroindate glasses. Journal of Non-Crystalline Solids, 1993, 161, 105-108.	3.1	61
147	Influence of processing parameters on the thickness of sol-gel silica films. , 1992, , .		9
148	The evolution of TEOS to silica gel and glass by vibrational spectroscopy. Journal of Non-Crystalline Solids, 1992, 147-148, 232-237.	3.1	166
149	Influence of water on the physical properties of fluoride glass. Journal of Non-Crystalline Solids, 1992, 140, 52-56.	3.1	6
150	Short and intermediate range structures in fluoride glasses by vibrational spectroscopy. Journal of Non-Crystalline Solids, 1992, 140, 92-97.	3.1	14
151	Detection of LO modes in glass by infrared reflection spectroscopy at oblique incidence. Physical Review B, 1992, 45, 161-170.	3.2	93
152	Intermediate Range Order in Zinc Bromide Based Glasses. Materials Science Forum, 1991, 67-68, 399-404.	0.3	3
153	Chapter 101 Fluoride glasses. Fundamental Theories of Physics, 1991, 15, 287-346.	0.3	14
154	Vibrational spectra and structure of silica gel films spun on c-Si substrates. , 1990, , .		11
155	Structural investigation of silica gel films by infrared spectroscopy. Journal of Applied Physics, 1990, 68, 4225-4232.	2.5	414
156	Characterization of silica gels by infrared reflection spectroscopy. Journal of Non-Crystalline Solids, 1990, 121, 193-197.	3.1	187
157	Detection of LO mode in v-SiO2 by infrared diffuse reflectance spectroscopy. Journal of Non-Crystalline Solids, 1990, 119, 238-241.	3.1	41
158	Structure and Properties of Long-Wavelength-Transmitting Halide Glasses. Journal of the American Ceramic Society, 1989, 72, 2065-2070.	3.8	12
159	Vibrational spectroscopy of glasses. Journal of Non-Crystalline Solids, 1988, 106, 347-358.	3.1	50
160	XPS study of non-bridging Se atoms in As2Se3-Tl2Se glasses. Journal of Non-Crystalline Solids, 1988, 101, 18-22.	3.1	4
161	IR Absorption of Molecular Species in Fluorozirconate Glasses. Materials Science Forum, 1988, 32-33, 427-431.	0.3	5
162	The Influence of Melting Conditions on the Physical Properties of Fluorozirconate Glasses. Materials Science Forum, 1987, 19-20, 299-304.	0.3	7

#	Article	lF	CITATIONS
163	Structure of zinc halide based glasses. Journal of Non-Crystalline Solids, 1987, 95-96, 279-286.	3.1	9
164	XPS studies of sulfide and selenide glasses. Journal of Non-Crystalline Solids, 1987, 95-96, 351-358.	3.1	8
165	Identification of non-bridging sulphur atoms in GeS2-Tl2S glasses. Journal of Materials Science Letters, 1987, 6, 701-704.	0.5	16
166	Physical Methods for Investigation of Halide Glass Structure. Materials Science Forum, 1985, 5-6, 427-436.	0.3	13
167	A vibrational spectroscopy study of the structure of binary thorium fluorohafnate glasses. Journal of Non-Crystalline Solids, 1984, 68, 203-217.	3.1	9
168	An X-ray diffraction study of the structure of barium fluorozirconate and fluorohafnate glasses. Journal of Non-Crystalline Solids, 1984, 69, 69-80.	3.1	23
169	X-ray photoemission study of fluorozirconate glass and related crystals. Journal of Non-Crystalline Solids, 1984, 69, 161-165.	3.1	16
170	A structural interpretation of the vibrational spectra of binary fluorohafnate glasses. Journal of Chemical Physics, 1983, 78, 6502-6511.	3.0	45
171	The effects of oxide impurities on the optical properties of fluoride glasses. Journal of Non-Crystalline Solids, 1983, 56, 63-68.	3.1	14
172	Vibrational spectra and structure of chloro-fluorozirconate glasses. Journal of Non-Crystalline Solids, 1982, 51, 187-199.	3.1	26
173	The electrical conductivity of fluorozirconate and chloro-fluorozirconate glasses. Journal of Materials Science, 1982, 17, 2533-2538.	3.7	26
174	Vibrational spectra and structure of fluorozirconate glasses. Journal of Chemical Physics, 1981, 74, 5954-5961.	3.0	151
175	Halide glasses. Journal of Non-Crystalline Solids, 1981, 43, 309-344.	3.1	140
176	Large stimulated emission cross section of Nd3+ in chlorophosphate glass. Journal of Non-Crystalline Solids, 1981, 43, 99-104.	3.1	17
177	Infrared absorption and structure of chlorophosphate glasses. Journal of Non-Crystalline Solids, 1980, 40, 535-548.	3.1	54
178	Chapter 5. Sol–Gel Glass and Nano–Macro Porous Bioscaffolds. RSC Smart Materials, 0, , 105-135.	0.1	0