Kjetil Tasken

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8541515/publications.pdf

Version: 2024-02-01

262 papers 14,181 citations

62 h-index 29333 108 g-index

276 all docs

276 docs citations

times ranked

276

17705 citing authors

#	Article	IF	Citations
1	Mclâ€1 and Bclâ€xL levels predict responsiveness to dual MEK/Bclâ€2 inhibition in B ell malignancies. Molecular Oncology, 2022, 16, 1153-1170.	2.1	9
2	<i>Ex vivo</i> drug sensitivity screening in multiple myeloma identifies drug combinations that act synergistically. Molecular Oncology, 2022, 16, 1241-1258.	2.1	7
3	A national precision cancer medicine implementation initiative for Norway. Nature Medicine, 2022, 28, 885-887.	15.2	7
4	Improving public cancer care by implementing precision medicine in Norway: IMPRESS-Norway. Journal of Translational Medicine, 2022, 20, 225.	1.8	7
5	Prototype precision oncology learning ecosystem: Norwegian precision cancer medicine implementation initiative Journal of Clinical Oncology, 2022, 40, e13634-e13634.	0.8	2
6	A heterozygous germline CD100 mutation in a family with primary sclerosing cholangitis. Science Translational Medicine, 2021, 13, .	5.8	8
7	Phosphoproteomics-Based Characterization of Prostaglandin E2 Signaling in T Cells. Molecular Pharmacology, 2021, 99, 370-382.	1.0	2
8	Plasma LOX-Products and Monocyte Signaling Is Reduced by Adjunctive Cyclooxygenase-2 Inhibitor in a Phase I Clinical Trial of Tuberculosis Patients. Frontiers in Cellular and Infection Microbiology, 2021, 11, 669623.	1.8	3
9	Aspirin as secondary prevention in colorectal cancer liver metastasis (ASAC trial): study protocol for a multicentre randomized placebo-controlled trial. Trials, 2021, 22, 642.	0.7	1
10	Systems approach reveals distinct and shared signaling networks of the four PGE ₂ receptors in T cells. Science Signaling, 2021, 14, eabc8579.	1.6	5
11	Enhanced Gut-Homing Dynamics and Pronounced Exhaustion of Mucosal and Blood CD4+ T Cells in HIV-Infected Immunological Non-Responders. Frontiers in Immunology, 2021, 12, 744155.	2.2	3
12	The Presence of Activated T Cell Subsets prior to Transplantation Is Associated with Increased Rejection Risk in Pancreas Transplant Recipients. Journal of Immunology, 2021, 207, 2501-2511.	0.4	4
13	A Phase I/II randomized trial of H56:IC31 vaccination and adjunctive cyclooxygenase-2-inhibitor treatment in tuberculosis patients. Nature Communications, 2021, 12, 6774.	5.8	34
14	Diversity of Intratumoral Regulatory T Cells in Non-Hodgkin Lymphoma. Blood, 2021, 138, 3519-3519.	0.6	0
15	An in vitro assay for biomarker discovery and dose prediction applied to ibrutinib plus venetoclax treatment of CLL. Leukemia, 2020, 34, 478-487.	3.3	19
16	Sensing of HIV-1 by TLR8 activates human T cells and reverses latency. Nature Communications, 2020, 11, 147.	5.8	62
17	B cell signalling pathwaysâ€"New targets for precision medicine in chronic lymphocytic leukaemia. Scandinavian Journal of Immunology, 2020, 92, e12931.	1.3	12
18	Optic Atrophy 1 Controls Human Neuronal Development by Preventing Aberrant Nuclear DNA Methylation. IScience, 2020, 23, 101154.	1.9	20

#	Article	IF	Citations
19	Heterogeneity of Regulatory T Cells in B-Cell Non-Hodgkin Lymphoma. Blood, 2020, 136, 27-28.	0.6	1
20	Carboxyl-Terminal Src Kinase Binds CD28 upon Activation and Mutes Downstream Signaling. Journal of Immunology, 2019, 203, 1055-1063.	0.4	6
21	GS-10-A germline mutation in SEMA4D leads to a familial syndrome of sclerosing cholangitis. Journal of Hepatology, 2019, 70, e46-e47.	1.8	0
22	The PI3K p $110\^{\rm l}$ Isoform Inhibitor Idelalisib Preferentially Inhibits Human Regulatory T Cell Function. Journal of Immunology, 2019, 202, 1397-1405.	0.4	104
23	FOXK1 and FOXK2 regulate aerobic glycolysis. Nature, 2019, 566, 279-283.	13.7	110
24	Remodeling of secretory lysosomes during education tunes functional potential in NK cells. Nature Communications, 2019, 10, 514.	5.8	103
25	EU-OPENSCREEN: A Novel Collaborative Approach to Facilitate Chemical Biology. SLAS Discovery, 2019, 24, 398-413.	1.4	12
26	Prostaglandin E 2 signaling networks in T cells revealed through a systems approach. FASEB Journal, 2019, 33, lb258.	0.2	0
27	Ex Vivo Drug Sensitivity Screens Identify Personalized Treatment Options for CLL Patients. Blood, 2019, 134, 5446-5446.	0.6	0
28	Ezrin-anchored PKA phosphorylates serine 369 and 373 on connexin 43 to enhance gap junction assembly, communication, and cell fusion. Biochemical Journal, 2018, 475, 455-476.	1.7	19
29	Cryopreservation of primary B cells minimally influences their signaling responses. Scientific Reports, 2018, 8, 17651.	1.6	14
30	Phenotype, penetrance, and treatment of 133 cytotoxic T-lymphocyte antigen 4–insufficient subjects. Journal of Allergy and Clinical Immunology, 2018, 142, 1932-1946.	1.5	344
31	OPA1-anchored PKA phosphorylates perilipin 1 on S522 and S497 in adipocytes differentiated from human adipose stem cells. Molecular Biology of the Cell, 2018, 29, 1487-1501.	0.9	22
32	In-Vitro Drug Sensitivity Screening in Chronic Lymphocytic Leukemia (CLL) Primary Patient Samples Identifies Drug Candidates for Precision Cancer Therapy. Blood, 2018, 132, 4676-4676.	0.6	3
33	Drug Sensitivity Screening on Multiple Myeloma for Precision Cancer Therapy. Blood, 2018, 132, 4677-4677.	0.6	4
34	Single cell profiling of phospho-protein levels in chronic lymphocytic leukemia. Oncotarget, 2018, 9, 9273-9284.	0.8	17
35	CD8+ T Cells That Coexpress ROR \hat{I}^3 t and T-bet Are Functionally Impaired and Expand in Patients with Distal Bile Duct Cancer. Journal of Immunology, 2017, 198, 1729-1739.	0.4	27
36	A protein kinase A-ezrin complex regulates connexin 43 gap junction communication in liver epithelial cells. Cellular Signalling, 2017, 32, 1-11.	1.7	23

#	Article	IF	Citations
37	Reply to M. LÃ, berg et al. Journal of Clinical Oncology, 2017, 35, 569-571.	0.8	О
38	Autologous bone marrow Th cells can support multiple myeloma cell proliferation in vitro and in xenografted mice. Leukemia, 2017, 31, 2114-2121.	3.3	13
39	OPA1 in Lipid Metabolism: Function of OPA1 in Lipolysis and Thermogenesis of Adipocytes. Hormone and Metabolic Research, 2017, 49, 276-285.	0.7	20
40	Defective IL-4 signaling in T cells defines severe common variable immunodeficiency. Journal of Autoimmunity, 2017, 81, 110-119.	3.0	14
41	Cancer Immunity and Immune Evasion Mechanisms. , 2017, , 195-220.		1
42	Proximal signaling responses in peripheral T cells from colorectal cancer patients are affected by high concentrations of circulating prostaglandin E2. Human Immunology, 2017, 78, 129-137.	1.2	7
43	A Cell-Based High-Throughput Assay for Gap Junction Communication Suitable for Assessing Connexin 43–Ezrin Interaction Disruptors Using IncuCyte ZOOM. SLAS Discovery, 2017, 22, 77-85.	1.4	8
44	Immune activation and HIV-specific T cell responses are modulated by a cyclooxygenase-2 inhibitor in untreated HIV-infected individuals: An exploratory clinical trial. PLoS ONE, 2017, 12, e0176527.	1.1	10
45	C77G in PTPRC (CD45) is no risk allele for ovarian cancer, but associated with less aggressive disease. PLoS ONE, 2017, 12, e0182030.	1.1	8
46	Molecular Mechanisms for cAMP-Mediated Immunoregulation in T cells – Role of Anchored Protein Kinase A Signaling Units. Frontiers in Immunology, 2016, 7, 222.	2.2	137
47	Plasma IP-10 Is Increased in Immunological NonResponders and Associated With Activated Regulatory T Cells and Persisting Low CD4 Counts. Journal of Acquired Immune Deficiency Syndromes (1999), 2016, 73, 138-148.	0.9	21
48	Malonate in the nucleotide-binding site traps human AKAP18 \hat{I}^3/\hat{I} in a novel conformational state. Acta Crystallographica Section F, Structural Biology Communications, 2016, 72, 591-597.	0.4	5
49	Critical Role of CD2 Co-stimulation in Adaptive Natural Killer Cell Responses Revealed in NKG2C-Deficient Humans. Cell Reports, 2016, 15, 1088-1099.	2.9	202
50	The COX- inhibitor indomethacin reduces Th1 effector and T regulatory cells in vitro in Mycobacterium tuberculosis infection. BMC Infectious Diseases, 2016, 16, 599.	1.3	29
51	Aspirin As Secondary Prevention in Patients With Colorectal Cancer: An Unselected Population-Based Study. Journal of Clinical Oncology, 2016, 34, 2501-2508.	0.8	60
52	Spleen tyrosine kinase inhibitors reduce CD40L-induced proliferation of chronic lymphocytic leukemia cells but not normal B cells. Haematologica, 2016, 101, e59-e62.	1.7	14
53	Regulatory T cells that co-express ROR \hat{I}^3 t and FOXP3 are pro-inflammatory and immunosuppressive and expand in human pancreatic cancer. Oncolmmunology, 2016, 5, e1102828.	2.1	51
54	Human regulatory T cells control TCR signaling and susceptibility to suppression in CD4+ T cells. Journal of Leukocyte Biology, 2016, 100, 5-16.	1.5	6

#	Article	IF	Citations
55	Phosphoprotein Detection by High-Throughput Flow Cytometry. Methods in Molecular Biology, 2016, 1355, 275-290.	0.4	6
56	Targeting protein–protein interactions in complexes organized by A kinase anchoring proteins. Frontiers in Pharmacology, 2015, 6, 192.	1.6	52
57	Spatiotemporal regulation of cAMP signaling controls the human trophoblast fusion. Frontiers in Pharmacology, 2015, 6, 202.	1.6	31
58	Anchored PKA as a gatekeeper for gap junctions. Communicative and Integrative Biology, 2015, 8, e1057361.	0.6	13
59	Monitoring regulatory T cells in clinical samples: consensus on an essential marker set and gating strategy for regulatory T cell analysis by flow cytometry. Cancer Immunology, Immunotherapy, 2015, 64, 1271-1286.	2.0	161
60	Activated regulatory and memory T-cells accumulate in malignant ascites from ovarian carcinoma patients. Cancer Immunology, Immunotherapy, 2015, 64, 337-347.	2.0	67
61	Targeting of type I protein kinase A to lipid rafts is required for platelet inhibition by the 3′,5′ yclic adenosine monophosphateâ€signaling pathway. Journal of Thrombosis and Haemostasis, 2015, 13, 1721-1734.	1.9	14
62	Impact of aspirin as secondary prevention in an unselected cohort of 25,644 patients with colorectal cancer: A population-based study Journal of Clinical Oncology, 2015, 33, 3504-3504.	0.8	4
63	Targeting Tuberculosis and HIV Infection-Specific Regulatory T Cells with MEK/ERK Signaling Pathway Inhibitors. PLoS ONE, 2015, 10, e0141903.	1.1	18
64	Pure Red Cell Aplasia - a New Manifestation of CTLA4 Mutation. Blood, 2015, 126, 2225-2225.	0.6	0
65	Compartmentalization of cAMP Signaling in Adipogenesis, Lipogenesis, and Lipolysis. Hormone and Metabolic Research, 2014, 46, 833-840.	0.7	51
66	The <scp>RIAD</scp> peptidomimetic inhibits <scp>HIV</scp> †replication in humanized <scp>NSG</scp> mice. European Journal of Clinical Investigation, 2014, 44, 146-152.	1.7	9
67	Multiplexed phosphospecific flow cytometry enables largeâ€scale signaling profiling and drug screening in blood platelets. Journal of Thrombosis and Haemostasis, 2014, 12, 1733-1743.	1.9	29
68	T-cell co-stimulation through the CD2 and CD28 co-receptors induces distinct signalling responses. Biochemical Journal, 2014, 460, 399-410.	1.7	39
69	Activated platelets promote increased monocyte expression of CXCR5 through prostaglandin E2-related mechanisms and enhance the anti-inflammatory effects of CXCL13. Atherosclerosis, 2014, 234, 352-359.	0.4	24
70	A PKA-ezrin-connexin 43 signaling complex controls gap junction communication and thereby trophoblast cell fusion. Journal of Cell Science, 2014, 127, 4172-85.	1.2	61
71	A Phenotypic Screening Approach to Identify Anticancer Compounds Derived from Marine Fungi. Assay and Drug Development Technologies, 2014, 12, 162-175.	0.6	9
72	Quantitative profiling of tyrosine phosphorylation revealed changes in the activity of the T cell receptor signaling pathway upon cisplatin-induced apoptosis. Journal of Proteomics, 2013, 91, 344-357.	1.2	14

#	Article	IF	Citations
73	EGF signalling and rapamycin-mediated mTOR inhibition in glioblastoma multiforme evaluated by phospho-specific flow cytometry. Journal of Neuro-Oncology, 2013, 112, 49-57.	1.4	10
74	CD147 in regulatory T cells. Cellular Immunology, 2013, 282, 17-20.	1.4	31
75	Cell signalling analyses in the functional genomics era. New Biotechnology, 2013, 30, 333-338.	2.4	13
76	The autoimmune-predisposing variant of lymphoid tyrosine phosphatase favors T helper 1 responses. Human Immunology, 2013, 74, 574-585.	1.2	48
77	Cytokine profile of CD4+ T-cells in decidua and circulation in 3rd trimester pregnancy. Placenta, 2013, 34, A75.	0.7	0
78	Creating Order from Chaos: Cellular Regulation by Kinase Anchoring. Annual Review of Pharmacology and Toxicology, 2013, 53, 187-210.	4.2	181
79	Interleukin-33 Drives a Proinflammatory Endothelial Activation That Selectively Targets Nonquiescent Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, e47-55.	1.1	44
80	Aggressive Treatment of Patients with Metastatic Colorectal Cancer Increases Survival: A Scandinavian Single-Center Experience. HPB Surgery, 2013, 2013, 1-8.	2.2	14
81	Proinflammatory and Immunoregulatory Roles of Eicosanoids in T Cells. Frontiers in Immunology, 2013, 4, 130.	2.2	111
82	Kinetics and Activation Requirements of Contact-Dependent Immune Suppression by Human Regulatory T Cells. Journal of Immunology, 2012, 188, 5459-5466.	0.4	18
83	LYP inhibits T-cell activation when dissociated from CSK. Nature Chemical Biology, 2012, 8, 437-446.	3.9	118
84	Modulation of T cell immune functions by the prostaglandin E ₂ $\hat{a}\in$ " cAMP pathway in chronic inflammatory states. British Journal of Pharmacology, 2012, 166, 411-419.	2.7	57
85	Correlation analysis of p53 protein isoforms with NPM1/FLT3 mutations and therapy response in acute myeloid leukemia. Oncogene, 2012, 31, 1533-1545.	2.6	52
86	Regulatory T-cell-mediated inhibition of antitumor immune responses is associated with clinical outcome in patients with liver metastasis from colorectal cancer. Cancer Immunology, Immunotherapy, 2012, 61, 1045-1053.	2.0	44
87	Modulation of proximal signaling in normal and transformed B cells by transmembrane adapter Cbp/PAG. Experimental Cell Research, 2012, 318, 1611-1619.	1.2	10
88	Phosphodiesterases as Targets for Modulating T-Cell Responses. Handbook of Experimental Pharmacology, 2011, , 345-363.	0.9	31
89	CD147 (Basigin/Emmprin) identifies FoxP3+CD45RO+CTLA4+-activated human regulatory T cells. Blood, 2011, 118, 5141-5151.	0.6	73
90	Effects of Type I Protein Kinase A Modulation on the T Cell Distal Pole Complex. Scandinavian Journal of Immunology, 2011, 74, 568-573.	1.3	5

#	Article	IF	CITATIONS
91	Stereoselective synthesis of (RP)-8-substituted-N6-acylated and N6-alkylated adenosine- $3\hat{a}\in^2$,5 $\hat{a}\in^2$ -cyclic phosphorothioic acids as cAMP antagonists. European Journal of Medicinal Chemistry, 2011, 46, 5935-5940.	2.6	3
92	Analysing phosphorylation-based signalling networks by phospho flow cytometry. Cellular Signalling, 2011, 23, 14-18.	1.7	14
93	Cyclic AMP-mediated immune regulation — Overview of mechanisms of action in T cells. Cellular Signalling, 2011, 23, 1009-1016.	1.7	195
94	Protein kinase A antagonist inhibits \hat{l}^2 -catenin nuclear translocation, c-Myc and COX-2 expression and tumor promotion in ApcMin/+ mice. Molecular Cancer, 2011, 10, 149.	7.9	41
95	Humanized mice as a useful model to study HIV-1 induced immune activation, its mechanisms and potential therapeutic approaches. Retrovirology, $2011, 8, .$	0.9	0
96	An entirely specific type I A-kinase anchoring protein that can sequester two molecules of protein kinase A at mitochondria. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E1227-35.	3.3	121
97	Mice with Disrupted Type I Protein Kinase A Anchoring in T Cells Resist Retrovirus-Induced Immunodeficiency. Journal of Immunology, 2011, 186, 5119-5130.	0.4	17
98	Correction: Inhibition of T Cell Activation by Cyclic Adenosine 5′-Monophosphate Requires Lipid Raft Targeting of Protein Kinase A Type I by the A-Kinase Anchoring Protein Ezrin. Journal of Immunology, 2011, 186, 7269-7271.	0.4	1
99	T Cell-Signaling Network Analysis Reveals Distinct Differences between CD28 and CD2 Costimulation Responses in Various Subsets and in the MAPK Pathway between Resting and Activated Regulatory T Cells. Journal of Immunology, 2011, 187, 5233-5245.	0.4	57
100	An Exploratory Trial of Cyclooxygenase Type 2 Inhibitor in HIV-1 Infection: Downregulated Immune Activation and Improved T Cell-Dependent Vaccine Responses. Journal of Virology, 2011, 85, 6557-6566.	1.5	58
101	Optic atrophy 1 is an A-kinase anchoring protein on lipid droplets that mediates adrenergic control of lipolysis. EMBO Journal, 2011 , 30 , 4371 - 4386 .	3.5	99
102	A novel human CD4 ⁺ Tâ€cell inducer subset with potent immunostimulatory properties. European Journal of Immunology, 2010, 40, 134-141.	1.6	14
103	The adaptor protein EBP50 is important for localization of the protein kinase A–Ezrin complex in T-cells and the immunomodulating effect of cAMP. Biochemical Journal, 2010, 425, 381-388.	1.7	31
104	PI3K p $110\hat{l}$ regulates T-cell cytokine production during primary and secondary immune responses in mice and humans. Blood, 2010, 115, 2203-2213.	0.6	174
105	High-resolution mapping of prostaglandin E2–dependent signaling networks identifies a constitutively active PKA signaling node in CD8+CD45RO+ T cells. Blood, 2010, 116, 2253-2265.	0.6	39
106	Spatiotemporal control of cyclic AMP immunomodulation through the PKA–Csk inhibitory pathway is achieved by anchoring to an Ezrin–EBP50–PAG scaffold in effector T cells. FEBS Letters, 2010, 584, 2681-2688.	1.3	21
107	Novel mechanism of signaling by CD28. Immunology Letters, 2010, 129, 1-6.	1.1	30
108	Quantitative proteome analysis of detergentâ€resistant membranes identifies the differential regulation of protein kinase C isoforms in apoptotic T cells. Proteomics, 2010, 10, 2758-2768.	1.3	19

#	Article	IF	CITATIONS
109	Combined Env- and Gag-specific T cell responses in relation to programmed death-1 receptor and CD4+ T cell loss rates in human immunodeficiency virus-1 infection. Clinical and Experimental Immunology, 2010, 161, 315-323.	1.1	13
110	Physiological Substrates of PKA and PKG. , 2010, , 1497-1514.		2
111	Cross Talk between Phosphatidylinositol 3-Kinase and Cyclic AMP (cAMP)-Protein Kinase A Signaling Pathways at the Level of a Protein Kinase B/\hat{l}^2 -Arrestin/cAMP Phosphodiesterase 4 Complex. Molecular and Cellular Biology, 2010, 30, 1660-1672.	1.1	61
112	Specificity and spatial dynamics of protein kinase A signaling organized by A-kinase-anchoring proteins. Journal of Molecular Endocrinology, 2010, 44, 271-284.	1.1	156
113	Increased cAMP Signaling Can Ameliorate the Hypertensive Condition in Spontaneously Hypertensive Rats. Journal of Vascular Research, 2009, 46, 25-35.	0.6	11
114	Splicing Factor Arginine/Serine-rich 17A (SFRS17A) Is an A-kinase Anchoring Protein That Targets Protein Kinase A to Splicing Factor Compartments. Journal of Biological Chemistry, 2009, 284, 35154-35164.	1.6	21
115	Mutually exclusive binding of PP1 and RNA to AKAP149 affects the mitochondrial network. Human Molecular Genetics, 2009, 18, 978-987.	1.4	22
116	Interplay between the heterotrimeric G-protein subunits $\hat{Gl}_{\pm q}$ and $\hat{Gl}_{\pm i2}$ sets the threshold for chemotaxis and TCR activation. BMC Immunology, 2009, 10, 27.	0.9	21
117	Interleukinâ€10â€secreting T cells define a suppressive subset within the HIVâ€1â€specific Tâ€cell population. European Journal of Immunology, 2009, 39, 1280-1287.	1.6	18
118	Design of proteolytically stable RI-anchoring disruptor peptidomimetics for <i>in vivo</i> studies of anchored typeÂl protein kinase A-mediated signalling. Biochemical Journal, 2009, 424, 69-78.	1.7	24
119	Waking up regulatory T cells. Blood, 2009, 114, 1136-1137.	0.6	7
120	Regulatory T cells in colorectal cancer patients suppress anti-tumor immune activity in a COX-2 dependent manner. Cancer Immunology, Immunotherapy, 2008, 57, 813-821.	2.0	124
121	Generation of highly suppressive adaptive CD8 ⁺ CD25 ⁺ FOXP3 ⁺ regulatory T cells by continuous antigen stimulation. European Journal of Immunology, 2008, 38, 640-646.	1.6	119
122	Reduced Cbl phosphorylation and degradation of the ζâ€chain of the Tâ€cell receptor/CD3 complex in T cells with low Lck levels. European Journal of Immunology, 2008, 38, 2557-2563.	1.6	12
123	The heterotrimeric Gâ€protein αâ€subunit Gαq regulates TCRâ€mediated immune responses through an Lckâ€dependent pathway. European Journal of Immunology, 2008, 38, 3208-3218.	1.6	24
124	Interactions between the Fyn SH3â€domain and adaptor protein Cbp/PAG derived ligands, effects on kinase activity and affinity. FEBS Journal, 2008, 275, 4863-4874.	2.2	21
125	Human Naturally Occurring and Adaptive Regulatory T cells Secrete High Levels of Leukaemia Inhibitory Factor upon Activation. Scandinavian Journal of Immunology, 2008, 68, 391-396.	1.3	13
126	Su.44. IL-10-Producing HIV-Specific T Cells Have Suppressive Properties. Clinical Immunology, 2008, 127, S138.	1.4	1

#	Article	IF	Citations
127	The potential use of AKAP18δas a drug target in heart failure patients. Expert Opinion on Biological Therapy, 2008, 8, 1099-1108.	1.4	20
128	CD8+ regulatory T cellsâ€"A distinct T-cell lineage or a transient T-cell phenotype?. Human Immunology, 2008, 69, 696-699.	1.2	18
129	Dual Specificity A-kinase Anchoring Proteins (AKAPs) Contain an Additional Binding Region That Enhances Targeting of Protein Kinase A Type I. Journal of Biological Chemistry, 2008, 283, 33708-33718.	1.6	56
130	Differentiation of naive CD4+ T cells into CD4+CD25+FOXP3+ regulatory T cells by continuous antigen stimulation. Journal of Leukocyte Biology, 2008, 83, 1111-1117.	1.5	31
131	Inhibition of Protein Kinase A Improves Effector Function of Monocytes from HIV-Infected Patients. AIDS Research and Human Retroviruses, 2008, 24, 1013-1015.	0.5	3
132	Diastolic dysfunction in alveolar hypoxia: a role for interleukin-18-mediated increase in protein phosphatase 2A. Cardiovascular Research, 2008, 80, 47-54.	1.8	28
133	LPS-activated monocytes suppress T-cell immune responses and induce FOXP3+ T cells through a COX-2-PGE2-dependent mechanism. International Immunology, 2008, 20, 235-245.	1.8	73
134	Regulation of FynT Function by Dual Domain Docking on PAG/Cbp. Journal of Biological Chemistry, 2008, 283, 2773-2783.	1.6	31
135	Role for the cAMP-Protein Kinase A Signaling Pathway in Suppression of Antitumor Immune Responses by Regulatory T Cells. Critical Reviews in Oncogenesis, 2008, 14, 57-77.	0.2	32
136	In Vivo Administration of a PKA Type I Inhibitor (Rp-8-Br-cAMPS) Restores T-Cell Responses in Retrovirus-Infected Mice. The Open Immunology Journal, 2008, 1, 20-24.	1.5	4
137	Reciprocal Regulation of SH3 and SH2 Domain Binding via Tyrosine Phosphorylation of a Common Site in CD3ε. Journal of Immunology, 2007, 179, 878-885.	0.4	76
138	Inhibition of T Cell Activation by Cyclic Adenosine 5′-Monophosphate Requires Lipid Raft Targeting of Protein Kinase A Type I by the A-Kinase Anchoring Protein Ezrin. Journal of Immunology, 2007, 179, 5159-5168.	0.4	108
139	Enhanced Expression of the Homeostatic Chemokines CCL19 and CCL21 in Clinical and Experimental Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 614-620.	1.1	134
140	Stereoselective preparation of (RP)-8-hetaryladenosine-3′,5′-cyclic phosphorothioic acids. Organic and Biomolecular Chemistry, 2007, 5, 2070-2080.	1.5	13
141	Spatiotemporal control of cAMP signalling processes by anchored signalling complexes. Biochemical Society Transactions, 2007, 35, 931-937.	1.6	69
142	Hypophosphorylated TCR/CD3ζ signals through a Grb2â€SOS1â€Ras pathway in Lck knockdown cells. European Journal of Immunology, 2007, 37, 2539-2548.	1.6	12
143	AKAP complex regulates Ca ²⁺ reâ€uptake into heart sarcoplasmic reticulum. EMBO Reports, 2007, 8, 1061-1067.	2.0	167
144	Reduced PDE4 expression and activity contributes to enhanced catecholamine-induced cAMP accumulation in adipocytes from FOXC2 transgenic mice. FEBS Letters, 2006, 580, 4126-4130.	1.3	20

#	Article	IF	Citations
145	Molecular Basis of AKAP Specificity for PKA Regulatory Subunits. Molecular Cell, 2006, 24, 383-395.	4.5	237
146	Negative regulation of T-cell receptor activation by the cAMP-PKA-Csk signalling pathway in T-cell lipid rafts. Frontiers in Bioscience - Landmark, 2006, 11, 2929.	3.0	34
147	The molecular machinery for cAMP-dependent immunomodulation in T-cells. Biochemical Society Transactions, 2006, 34, 476-479.	1.6	62
148	Compartmentalized cAMP signalling is important in the regulation of Ca2+ cycling in the heart. Biochemical Society Transactions, 2006, 34, 489-491.	1.6	14
149	Characterization of A-kinase-anchoring disruptors using a solution-based assay. Biochemical Journal, 2006, 400, 493-499.	1.7	35
150	F.131. Regulatory T-Cells in Colorectal Cancer Suppress Immune Function and Anti-Tumor Activity. Clinical Immunology, 2006, 119, S97.	1.4	0
151	Immune modulatory effects of cyclooxygenase type 2 inhibitors in HIV patients on combination antiretroviral treatment. Aids, 2006, 20, 813-820.	1.0	29
152	Delineation of Type I Protein Kinase A-selective Signaling Events Using an RI Anchoring Disruptor. Journal of Biological Chemistry, 2006, 281, 21535-21545.	1.6	133
153	The Cyclic AMP-Epac1-Rap1 Pathway Is Dissociated from Regulation of Effector Functions in Monocytes but Acquires Immunoregulatory Function in Mature Macrophages. Journal of Immunology, 2006, 176, 7361-7370.	0.4	85
154	FOXP3+CD4+CD25+ Adaptive Regulatory T Cells Express Cyclooxygenase-2 and Suppress Effector T Cells by a Prostaglandin E2-Dependent Mechanism. Journal of Immunology, 2006, 177, 246-254.	0.4	224
155	Role of cAMP Phosphodiesterase 4 in Regulation of T-Cell Function. Critical Reviews in Immunology, 2006, 26, 443-452.	1.0	27
156	Autoimmune-associated lymphoid tyrosine phosphatase is a gain-of-function variant. Nature Genetics, 2005, 37, 1317-1319.	9.4	643
157	In resting COS1 cells a dominant negative approach shows that specific, anchored PDE4 cAMP phosphodiesterase isoforms gate the activation, by basal cyclic AMP production, of AKAP-tethered protein kinase A type II located in the centrosomal region. Cellular Signalling, 2005, 17, 1158-1173.	1.7	102
158	Prostaglandin E2 induces the expression of functional inhibitory CD94/NKG2A receptors in human CD8+ T lymphocytes by a cAMP-dependent protein kinase A type I pathway. Biochemical Pharmacology, 2005, 70, 714-724.	2.0	38
159	A fast and sensitive method for isolation of detergent-resistant membranes from T cells. Journal of Immunological Methods, 2005, 305, 199-205.	0.6	4
160	Short-Interfering RNA-Mediated Lck Knockdown Results in Augmented Downstream T Cell Responses. Journal of Immunology, 2005, 175, 7398-7406.	0.4	27
161	Coupled Motions in the SH2 and Kinase Domains of Csk Control Src Phosphorylation. Journal of Molecular Biology, 2005, 351, 131-143.	2.0	67
162	Effect of activated platelets on expression of cytokines in peripheral blood mononuclear cells – potential role of prostaglandin E2. Thrombosis and Haemostasis, 2004, 92, 1358-1367.	1.8	20

#	Article	IF	CITATIONS
163	The cAMP-Epac-Rap1 Pathway Regulates Cell Spreading and Cell Adhesion to Laminin-5 through the $\hat{l}\pm3\hat{l}^21$ Integrin but Not the $\hat{l}\pm6\hat{l}^24$ Integrin. Journal of Biological Chemistry, 2004, 279, 44889-44896.	1.6	109
164	The Epidermal Growth Factor-Like Growth Factor Amphiregulin Is Strongly Induced by the Adenosine 3′,5′-Monophosphate Pathway in Various Cell Types. Endocrinology, 2004, 145, 5177-5184.	1.4	36
165	Localized Effects of cAMP Mediated by Distinct Routes of Protein Kinase A. Physiological Reviews, 2004, 84, 137-167.	13.1	665
166	TCR- and CD28-Mediated Recruitment of Phosphodiesterase 4 to Lipid Rafts Potentiates TCR Signaling. Journal of Immunology, 2004, 173, 4847-4858.	0.4	123
167	Haematopoietic protein tyrosine phosphatase (HePTP) phosphorylation by cAMP-dependent protein kinase in T-cells: dynamics and subcellular location. Biochemical Journal, 2004, 378, 335-342.	1.7	43
168	Knockdown of C-terminal Src kinase by siRNA-mediated RNA interference augments T cell receptor signaling in mature T cells. European Journal of Immunology, 2004, 34, 2191-2199.	1.6	43
169	Cytokine networks are pre-activated in T cells from HIV-infected patients on HAART and are under the control of cAMP. Aids, 2004, 18, 171-179.	1.0	30
170	Treatment with type-2 selective and non-selective cyclooxygenase inhibitors improves T-cell proliferation in HIV-infected patients on highly active antiretroviral therapy. Aids, 2004, 18, 1229.	1.0	0
171	Treatment with type-2 selective and non-selective cyclooxygenase inhibitors improves T-cell proliferation in HIV-infected patients on highly active antiretroviral therapy. Aids, 2004, 18, 951-952.	1.0	17
172	Cyclo-oxygenase type 2-dependent prostaglandin E2 secretion is involved in retrovirus-induced T-cell dysfunction in mice. Biochemical Journal, 2004, 384, 469-476.	1.7	27
173	A Kinase Anchoring Protein (AKAP) Interaction and Dimerization of the Rll^{\pm} and Rll^{2} Regulatory Subunits of Protein Kinase A In vivo by the Yeast Two Hybrid System. Journal of Molecular Biology, 2003, 327, 609-618.	2.0	22
174	Impaired Secretion of IL-10 by T Cells from Patients with Common Variable Immunodeficiency–Involvement of Protein Kinase A Type I. Journal of Immunology, 2003, 170, 5772-5777.	0.4	66
175	Protein Kinase A-anchoring Protein AKAP95 Interacts with MCM2, a Regulator of DNA Replication. Journal of Biological Chemistry, 2003, 278, 26750-26756.	1.6	43
176	Dissociating the Centrosomal Matrix Protein AKAP450 from Centrioles Impairs Centriole Duplication and Cell Cycle Progression. Molecular Biology of the Cell, 2003, 14, 2436-2446.	0.9	79
177	Merlin Links to the cAMP Neuronal Signaling Pathway by Anchoring the $Rl\hat{I}^2$ Subunit of Protein Kinase A. Journal of Biological Chemistry, 2003, 278, 41167-41172.	1.6	44
178	Endosome-to-Golgi Transport Is Regulated by Protein Kinase A Type IlÎ \pm . Journal of Biological Chemistry, 2003, 278, 1991-1997.	1.6	20
179	Protein Kinase A Intersects Src Signaling in Membrane Microdomains. Journal of Biological Chemistry, 2003, 278, 17170-17177.	1.6	53
180	A Winged Helix Forkhead (FOXD2) Tunes Sensitivity to cAMP in T Lymphocytes through Regulation of cAMP-dependent Protein Kinase Rlî±. Journal of Biological Chemistry, 2003, 278, 17573-17579.	1.6	18

#	Article	IF	CITATIONS
181	Combined Spatial and Enzymatic Regulation of Csk by cAMP and Protein Kinase A Inhibits T Cell Receptor Signaling. Journal of Biological Chemistry, 2003, 278, 17597-17600.	1.6	65
182	CD7 Is a Differentiation Marker That Identifies Multiple CD8 T Cell Effector Subsets. Journal of Immunology, 2003, 170, 2349-2355.	0.4	66
183	Positive and negative regulation of T-cell activation through kinases and phosphatases. Biochemical Journal, 2003, 371, 15-27.	1.7	242
184	Activation of C-terminal Src kinase (Csk) by phosphorylation at serine-364 depends on the Csk-Src homology 3 domain. Biochemical Journal, 2003, 372, 271-278.	1.7	44
185	Physiological Substrates of PKA and PKG. , 2003, , 501-510.		0
186	Inhibition of Antigen-Specific T Cell Proliferation and Cytokine Production by Protein Kinase A Type I. Journal of Immunology, 2002, 169, 802-808.	0.4	93
187	Mechanisms of FOXC2- and FOXD1-mediated Regulation of the RIα Subunit of cAMP-dependent Protein Kinase Include Release of Transcriptional Repression and Activation by Protein Kinase Bα and cAMP. Journal of Biological Chemistry, 2002, 277, 22902-22908.	1.6	46
188	Insulin and TNFα Induce Expression of the Forkhead Transcription Factor Gene <i>Foxc2</i> i>in 3T3-L1 Adipocytes via PI3K and ERK 1/2-Dependent Pathways. Molecular Endocrinology, 2002, 16, 873-883.	3.7	51
189	Electrical Muscle Activity Pattern and Transcriptional and Posttranscriptional Mechanisms Regulate PKA Subunit Expression in Rat Skeletal Muscle. Molecular and Cellular Neurosciences, 2002, 19, 125-137.	1.0	8
190	Molecular mechanisms for protein kinase A-mediated modulation of immune function. Cellular Signalling, 2002, 14, 1-9.	1.7	181
191	USF2 inhibits C/EBP-mediated transcriptional regulation of the RIIbeta subunit of cAMP-dependent protein kinase. BMC Molecular Biology, 2002, 3, 10.	3.0	11
192	Distinct but overlapping domains of AKAP95 are implicated in chromosome condensation and condensin targeting. EMBO Reports, 2002, 3, 426-432.	2.0	47
193	Insulin and TNFÂ Induce Expression of the Forkhead Transcription Factor Gene Foxc2 in 3T3-L1 Adipocytes via PI3K and ERK 1/2-Dependent Pathways. Molecular Endocrinology, 2002, 16, 873-883.	3.7	36
194	FOXC2 Is a Winged Helix Gene that Counteracts Obesity, Hypertriglyceridemia, and Diet-Induced Insulin Resistance. Cell, 2001, 106, 563-573.	13.5	500
195	Differential expression and regulation of the PKA signalling pathway in fast and slow skeletal muscle. Anatomy and Embryology, 2001, 203, 193-201.	1.5	16
196	Cyclic AMP regulates expression of the Rlα subunit of cAMP-dependent protein kinase through an alternatively spliced 5′ UTR. FEBS Journal, 2001, 268, 5920-5929.	0.2	14
197	Binding of PKA-RIIα to the Adenovirus E1A12S Oncoprotein Correlates with its Nuclear Translocation and an Increase in PKA-dependent Promoter Activity. Virology, 2001, 285, 30-41.	1.1	19
198	Novel alternatively spliced mRNA (1c) of the protein kinase A RIα subunit is implicated in haploid germ cell specific expression. Molecular Reproduction and Development, 2001, 59, 11-16.	1.0	14

#	Article	IF	Citations
199	A soluble LAT deletion mutant inhibits T-cell activation: reduced recruitment of signalling molecules to glycolipid-enriched microdomains. Cellular Signalling, 2001, 13, 213-220.	1.7	17
200	Increased cAMP levels and protein kinase (PKA) type I activation in CD4+ T cells and B cells contribute to the retrovirusâ€induced immunodeficiency of mice (MAIDS). A useful in vivo model for drug testing in PKA type Iâ€induced immunodeficiency. FASEB Journal, 2001, 15, 1466-1468.	0.2	20
201	Phosphodiesterase 4D and Protein Kinase A Type II Constitute a Signaling Unit in the Centrosomal Area. Journal of Biological Chemistry, 2001, 276, 21999-22002.	1.6	215
202	Release from Tonic Inhibition of T Cell Activation through Transient Displacement of C-terminal Src Kinase (Csk) from Lipid Rafts. Journal of Biological Chemistry, 2001, 276, 29313-29318.	1.6	146
203	Activation of the Cooh-Terminal Src Kinase (Csk) by Camp-Dependent Protein Kinase Inhibits Signaling through the T Cell Receptor. Journal of Experimental Medicine, 2001, 193, 497-508.	4.2	299
204	Identification, Localization, and Function in Steroidogenesis of PAP7: A Peripheral-Type Benzodiazepine Receptor- and PKA ($Rll\pm$)-Associated Protein. Molecular Endocrinology, 2001, 15, 2211-2228.	3.7	121
205	Identification, Localization, and Function in Steroidogenesis of PAP7: A Peripheral-Type Benzodiazepine Receptor- and PKA (RIÂ)-Associated Protein. Molecular Endocrinology, 2001, 15, 2211-2228.	3.7	65
206	Identification, cloning and characterization of a novel nuclear protein, HA95, homologous to A-kinase anchoring protein 95*. Biology of the Cell, 2000, 92, 27-37.	0.7	26
207	Involvement of protein kinase A in fibroblast growth factor-2-activated transcription. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 168-173.	3.3	35
208	Recruitment of Protein Phosphatase 1 to the Nuclear Envelope by a-Kinase Anchoring Protein Akap149 Is a Prerequisite for Nuclear Lamina Assembly. Journal of Cell Biology, 2000, 150, 1251-1262.	2.3	155
209	Regulation of Tissue Inhibitor of Metalloproteinases-1 in Rat Sertoli Cells: Induction by Germ Cell Residual Bodies, Interleukin-1α, and Second Messengers1. Biology of Reproduction, 2000, 62, 1040-1046.	1.2	27
210	A Novel Isoform of Human Cyclic 3′,5′-Adenosine Monophosphate-Dependent Protein Kinase, Cα-s, Localizes to Sperm Midpiece1. Biology of Reproduction, 2000, 63, 607-611.	1.2	52
211	Localization of a Novel Human A-Kinase-Anchoring Protein, hAKAP220, during Spermatogenesis. Developmental Biology, 2000, 223, 194-204.	0.9	98
212	Analysis of A-kinase anchoring protein (AKAP) interaction with protein kinase A (PKA) regulatory subunits: PKA isoform specificity in AKAP binding. Journal of Molecular Biology, 2000, 298, 329-339.	2.0	175
213	Additive effects of IL-2 and protein kinase A type I antagonist on function of T cells from HIV-infected patients on HAART. Aids, 1999, 13, 109-114.	1.0	21
214	The a-Kinase–Anchoring Protein Akap95 Is a Multivalent Protein with a Key Role in Chromatin Condensation at Mitosis. Journal of Cell Biology, 1999, 147, 1167-1180.	2.3	123
215	Method of transfection affects the cAMP-mediated induction of the RIIbeta subunit of protein kinase A in Sertoli cells: inhibition of response by increase in intracellullar calcium. European Journal of Endocrinology, 1999, 141, 75-82.	1.9	3
216	Crosstalk between cAMP-dependent kinase and MAP kinase through a protein tyrosine phosphatase. Nature Cell Biology, 1999, 1, 305-310.	4.6	205

#	Article	IF	CITATIONS
217	CREB phosphorylation and melatonin biosynthesis in the rat pineal gland: Involvement of cyclic AMP dependent protein kinase type II. Journal of Pineal Research, 1999, 27, 170-182.	3.4	53
218	Cyclic-AMP-dependent protein kinase (PKA) in testicular cells. Cell specific expression, differential regulation and targeting of subunits of PKA. Journal of Steroid Biochemistry and Molecular Biology, 1999, 69, 367-378.	1.2	25
219	Differential Localization of Protein Kinase A Type II Isozymes in the Golgi–Centrosomal Area. Experimental Cell Research, 1999, 249, 131-146.	1.2	44
220	Identification and Quantitation of cAMP-dependent Protein Kinase R Subunit Isoforms in Subcellular Fractions of Failing Human Myocardium. Journal of Molecular and Cellular Cardiology, 1999, 31, 971-980.	0.9	10
221	Role of cyclic AMP-dependent protein kinases in human villous cytotrophoblast differentiation. Placenta, 1998, 19, 295-314.	0.7	8
222	Kinetic properties of the C-terminal Src kinase, p50csk. BBA - Proteins and Proteomics, 1998, 1384, 285-293.	2.1	11
223	Isozymes of cyclic AMP-dependent protein kinases (PKA) in human lymphoid cell lines: Levels of endogenous cAMP influence levels of PKA subunits and growth in lymphoid cell lines. Journal of Cellular Physiology, 1998, 177, 85-93.	2.0	27
224	Localization of cAMP-dependent signal transducers in early rat liver carcinogenesis. Histochemistry and Cell Biology, 1998, 109, 203-209.	0.8	10
225	Molecular Cloning, Chromosomal Localization, and Cell Cycle-Dependent Subcellular Distribution of the A-Kinase Anchoring Protein, AKAP95. Experimental Cell Research, 1998, 238, 305-316.	1.2	99
226	The Gene Encoding the \hat{Cl}^3 Catalytic Subunit of cAMP-Dependent Protein Kinase Is a Transcribed Retroposon. Genomics, 1998, 49, 290-297.	1.3	55
227	Mapping of the Gene Encoding the Regulatory Subunit RIIα of cAMP-Dependent Protein Kinase (Locus) Tj ETQq1	1 0,78431 1.3	4 ₅ rgBT /Ove
228	Diagnostic Utility of the Polymerase Chain Reaction in 2 Cases of Suspected Whipple Disease. Archives of Internal Medicine, 1998, 158, 801.	4.3	9
229	Elevated Expression of Lanosterol 14α-Demethylase (CYP51) and the Synthesis of Oocyte Meiosis-Activating Sterols in Postmeiotic Germ Cells of Male Rats1. Endocrinology, 1998, 139, 2314-2321.	1.4	51
230	Mitosis-specific Phosphorylation and Subcellular Redistribution of the RIIÎ \pm Regulatory Subunit of cAMP-dependent Protein Kinase. Journal of Biological Chemistry, 1998, 273, 34594-34602.	1.6	43
231	Molecular Cloning of the cDNA Encoding pp36, a Tyrosine-phosphorylated Adaptor Protein Selectively Expressed by T Cells and Natural Killer Cells. Journal of Experimental Medicine, 1998, 187, 1157-1161.	4.2	144
232	Protein kinase A type I antagonist restores immune responses of T cells from HIVâ€infected patients. FASEB Journal, 1998, 12, 855-862.	0.2	105
233	Activated Protein Kinase A Is Required for Differentiation-Dependent Transcription of the Decidual Prolactin Gene in Human Endometrial Stromal Cells ¹ . Endocrinology, 1997, 138, 929-937.	1.4	137
234	The Human Gene for the Regulatory Subunit Rlα of Cyclic Adenosine 3′,5′-Monophosphate-Dependent Protein Kinase: Two Distinct Promoters Provide Differential Regulation of Alternately Spliced Messenger Ribonucleic Acids1. Endocrinology, 1997, 138, 169-181.	1.4	45

#	Article	IF	Citations
235	Selective Activation of cAMP-dependent Protein Kinase Type I Inhibits Rat Natural Killer Cell Cytotoxicity. Journal of Biological Chemistry, 1997, 272, 5495-5500.	1.6	68
236	Characterization of the Human Gene Encoding the Type \hat{l}^{\pm} and Type \hat{l}^{2} cGMP-Dependent Protein Kinase (PRKG1). Genomics, 1997, 42, 311-318.	1.3	114
237	Characterization of the 5′-flanking region of the gene for the cAMP-inducible protein kinase A subunit, RIIβ, in Sertoli cells. Molecular and Cellular Endocrinology, 1997, 129, 101-114.	1.6	15
238	Molecular cloning, upstream sequence and promoter studies of the human gene for the regulatory subunit RIIÎ \pm of cAMP-dependent protein kinase. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1997, 1350, 98-108.	2.4	17
239	16 Structure, function, and regulation of human cAMP-dependent protein kinases. Advances in Second Messenger and Phosphoprotein Research, 1997, 31, 191-204.	4.5	140
240	The Gene Encoding the Catalytic Subunit $\hat{Cl_{\pm}}$ of cAMP-Dependent Protein Kinase (Locus PRKACA) Localizes to Human Chromosome Region 19p13.1. Genomics, 1996, 36, 535-538.	1.3	18
241	Is basic endocrinology disappearing?. European Journal of Endocrinology, 1996, 134, 7-8.	1.9	4
242	Cyclic AMP-dependent protein kinase (cAK) in human B cells: co-localization of type I cAK (RIα2C2) with the antigen receptor during anti-immunoglobulin-induced B cell activation. European Journal of Immunology, 1996, 26, 1290-1296.	1.6	44
243	PKA., 1995,, 58-63.		10
244	Location of cAMP-dependent protein kinase type I with the TCR-CD3 complex. Science, 1994, 263, 84-87.	6.0	195
245	Expression of protein kinase A and protein kinase C during ongoing human cytomegalovirus infection. Archives of Virology, 1994, 138, 85-93.	0.9	7
246	Cyclic AMP Sensitive Signalling by the CD28 Marker Requires Concomitant Stimulation by the T-Cell Antigen Receptor (TCR/CD3) Complex. Scandinavian Journal of Immunology, 1994, 40, 201-208.	1.3	16
247	Characterization of in-vitro-translated human regulatory and catalytic subunits of cAMP-dependent protein kinases. FEBS Journal, 1994, 220, 217-223.	0.2	20
248	Assignment of the Gene Encoding the 5-HT1E Serotonin Receptor (S31) (Locus HTR1E) to Human Chromosome 6q14-q15. Genomics, 1994, 22, 637-640.	1.3	16
249	Cyclic AMP downregulates c-mycexpression by inhibition of transcript initiation in human B-precursor Reh cells. FEBS Letters, 1994, 337, 71-76.	1.3	12
250	Human Regulatory Subunit Rl \hat{I}^2 of cAMP-Dependent Protein Kinases: Expression, Holoenzyme Formation and Microinjection into Living Cells. Experimental Cell Research, 1994, 214, 595-605.	1.2	42
251	Regulation of Glucocorticoid Receptor (GR) mRNA and protein levels by phorbol ester in MCF-7 cells. Mechanism of GR mRNA induction and decay. Journal of Steroid Biochemistry and Molecular Biology, 1994, 48, 23-29.	1.2	2
252	Interferon-gamma Stimulation of Messenger RNA for Human Secretory Component (poly-lg Receptor) Depends on Continuous Intermediate Protein Synthesis. Scandinavian Journal of Immunology, 1993, 37, 251-256.	1.3	28

#	Article	IF	CITATIONS
253	Molecular cloning and exon-intron mapping of the gene encoding human transmembrane secretory component (the poly-lg receptor). European Journal of Immunology, 1992, 22, 2309-2315.	1.6	59
254	Molecular cloning, cDNA structure and tissue-specific expression of the human regulatory subunit $Rl\hat{l}^2$ of cAMP-dependent protein kinases. Biochemical and Biophysical Research Communications, 1991, 176, 166-172.	1.0	66
255	Different Mechanisms are Involved in cAMP-Mediated Induction of mRNAs for Subunits of cAMP-Dependent Protein Kinases. Molecular Endocrinology, 1991, 5, 21-28.	3.7	55
256	Alloreactive Lympohokine-activated killer cells from athymic nude rats do not express CD3-associated $\hat{l}_{\pm}/\hat{l}_{\pm}^2$ or $\hat{l}_{\pm}/\hat{l}_{\pm}^3$ T cell recptors. International Immunology, 1990, 2, 453-460.	1.8	19
257	Protein kinase C activation selectively increases mRNA levels for one of the regulatory subunits (Rl $\hat{I}\pm$) of cAMP-dependent protein kinases in HT-29 cells. Biochemical and Biophysical Research Communications, 1990, 172, 409-414.	1.0	14
258	Molecular Cloning, Complementary Deoxyribonucleic Acid Structure and Predicted Full-Length Amino Acid Sequence of the Hormone-Inducible Regulatory Subunit of 3′-5′-Cyclic Adenosine Monophosphate-Dependent Protein Kinase from Human Testis. Molecular Endocrinology, 1988, 2, 1364-1373.	3.7	115
259	Molecular cloning, cDNA structure and deduced amino acid sequence for a type I regulatory subunit of cAMP-dependent protein kinase from human testis. Biochemical and Biophysical Research Communications, 1987, 149, 939-945.	1.0	93
260	Csk. The AFCS-nature Molecule Pages, 0, , .	0.2	11
261	Csk binding protein. The AFCS-nature Molecule Pages, 0, , .	0.2	0
262	Optic Atrophy 1 Controls Human Neuronal Development by Preventing Aberrant Nuclear DNA Methylation. SSRN Electronic Journal, $0, , .$	0.4	0