Hongwei Duan

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8541447/hongwei-duan-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

155	14,260 citations	65	118
papers		h-index	g-index
158	15,752 ext. citations	10.1	6.84
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
155	Localized Degradation of Neutrophil Extracellular Traps by Photoregulated Enzyme Delivery for Cancer Immunotherapy and Metastasis Suppression <i>ACS Nano</i> , 2022 ,	16.7	4
154	Polymer-Enabled Self-Assembly of Plasmonic Nanostructures 2022 , 127-182		
153	Controlled Delivery 2022 , 525-553		
152	Caging Cationic Polymer Brush Coated Plasmonic Nanostructures for Traceable Selective Antimicrobial Activities <i>Macromolecular Rapid Communications</i> , 2022 , e2100812	4.8	О
151	Biomedical Applications of Plasmonic Nanoparticles 2022 , 449-478		
150	Plasmonic-Fluorescent Janus Ag/AgS Nanoparticles for HO-Activated NIR-II Fluorescence Imaging. <i>Nano Letters</i> , 2021 , 21, 2625-2633	11.5	18
149	Janus Nanoparticles: From Fabrication to (Bio)Applications. ACS Nano, 2021 , 15, 6147-6191	16.7	39
148	Universal and Switchable Omni-Repellency of Liquid-Infused Surfaces for On-Demand Separation of Multiphase Liquid Mixtures. <i>ACS Nano</i> , 2021 , 15, 6977-6986	16.7	7
147	Rapid fabrication of complex nanostructures using room-temperature ultrasonic nanoimprinting. <i>Nature Communications</i> , 2021 , 12, 3146	17.4	5
146	Magnetic nanochains-based dynamic ELISA for rapid and ultrasensitive detection of acute myocardial infarction biomarkers. <i>Analytica Chimica Acta</i> , 2021 , 1166, 338567	6.6	3
145	Charge-Reversal Polymer Nano-modulators for Photodynamic Immunotherapy of Cancer. <i>Angewandte Chemie</i> , 2021 , 133, 19504-19512	3.6	2
144	Molecular complexes of calf thymus DNA with various bioactive compounds: Formation and characterization. <i>International Journal of Biological Macromolecules</i> , 2021 , 168, 775-783	7.9	3
143	Chemical processing of interfacially assembled metal nanowires for surface-enhanced Raman scattering detection of food contaminants. <i>Journal of Raman Spectroscopy</i> , 2021 , 52, 532-540	2.3	2
142	Metabolic Labeling Mediated Targeting and Thermal Killing of Gram-Positive Bacteria by Self-Reporting Janus Magnetic Nanoparticles. <i>Small</i> , 2021 , 17, e2006357	11	17
141	Multienzyme nanoassemblies: from rational design to biomedical applications. <i>Biomaterials Science</i> , 2021 , 9, 7323-7342	7.4	1
140	Charge-Reversal Polymer Nano-modulators for Photodynamic Immunotherapy of Cancer. Angewandte Chemie - International Edition, 2021 , 60, 19355-19363	16.4	27
139	Antibiofilm Activity of Gallium(III) Complexed Anionic Polymers in Combination with Antibiotics. <i>Macromolecular Rapid Communications</i> , 2021 , 42, e2100255	4.8	O

(2019-2020)

138	Improving the performance of upconversion nanoprobe-based lateral flow immunoassays by supramolecular self-assembly core/shell strategies. <i>Sensors and Actuators B: Chemical</i> , 2020 , 318, 12823.	8 .5	12
137	Functionalized MXene Enabled Sustainable Water Harvesting and Desalination. <i>Advanced Sustainable Systems</i> , 2020 , 4, 2000102	5.9	18
136	Hierarchical Graphene/Metal-Organic Framework Composites with Tailored Wettability for Separation of Immiscible Liquids. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 35563-35571	9.5	8
135	Mesoporous polydopamine with built-in plasmonic core: Traceable and NIR triggered delivery of functional proteins. <i>Biomaterials</i> , 2020 , 238, 119847	15.6	24
134	Silver nanoprism-based plasmonic ELISA for sensitive detection of fluoroquinolones. <i>Journal of Materials Chemistry B</i> , 2020 , 8, 3667-3675	7.3	8
133	A Self-Assembled Plasmonic Substrate for Enhanced Fluorescence Resonance Energy Transfer. <i>Advanced Materials</i> , 2020 , 32, e1906475	24	20
132	Mussel-Inspired Dual-Superlyophobic Biomass Membranes for Selective Oil/Water Separation. <i>Advanced Materials Interfaces</i> , 2020 , 7, 1901756	4.6	16
131	A Glycosylated Cationic Block Poly(Epeptide) Reverses Intrinsic Antibiotic Resistance in All ESKAPE Gram-Negative Bacteria. <i>Angewandte Chemie</i> , 2020 , 132, 6886-6893	3.6	3
130	Photoactive Nanocarriers for Controlled Delivery. Advanced Functional Materials, 2020, 30, 1903896	15.6	24
129	Antibacterial properties of synthesized cyclic and linear cationic copolymers. <i>Polymer Chemistry</i> , 2020 , 11, 6632-6639	4.9	8
128	A synergistic optical strategy for enhanced deep-tumor penetration and therapy in the second near-infrared window. <i>Materials Horizons</i> , 2020 , 7, 2929-2935	14.4	16
127	Hierarchical Disordered Colloidal Thin Films with Duplex Optical Elements for Advanced Anti-Counterfeiting Coding. <i>Advanced Optical Materials</i> , 2020 , 8, 2001378	8.1	6
126	Polydopamine-Mediated Superlyophobic Polysiloxane Coating of Porous Substrates for Efficient Separation of Immiscible Liquids. <i>Advanced Materials Interfaces</i> , 2020 , 7, 2000428	4.6	4
125	Transformable hybrid semiconducting polymer nanozyme for second near-infrared photothermal ferrotherapy. <i>Nature Communications</i> , 2020 , 11, 1857	17.4	199
124	A Glycosylated Cationic Block Poly(Epeptide) Reverses Intrinsic Antibiotic Resistance in All ESKAPE Gram-Negative Bacteria. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 6819-6826	16.4	35
123	Enantiomeric glycosylated cationic block co-beta-peptides eradicate Staphylococcus aureus biofilms and antibiotic-tolerant persisters. <i>Nature Communications</i> , 2019 , 10, 4792	17.4	53
122	Glycosylated Copper Sulfide Nanocrystals for Targeted Photokilling of Bacteria in the Near-Infrared II Window. <i>Advanced Therapeutics</i> , 2019 , 2, 1900052	4.9	5
121	Nanotransducers for Near-Infrared Photoregulation in Biomedicine. <i>Advanced Materials</i> , 2019 , 31, e1901	1 <u>6</u> ρ7	93

120	Flexible Bioinspired Ternary Nanocomposites Based on Carboxymethyl Cellulose/Nanoclay/Graphene Oxide. <i>ACS Applied Polymer Materials</i> , 2019 , 1, 1505-1513	4.3	11
119	Polydopamine-mediated synthesis of core-shell gold@calcium phosphate nanoparticles for enzyme immobilization. <i>Biomaterials Science</i> , 2019 , 7, 2841-2849	7.4	11
118	Responsive Amorphous Photonic Structures of Spherical/Polyhedral Colloidal Metal © rganic Frameworks. <i>Advanced Optical Materials</i> , 2019 , 7, 1900522	8.1	14
117	Intracellular and Cellular Detection by SERS-Active Plasmonic Nanostructures. <i>ChemBioChem</i> , 2019 , 20, 2432-2441	3.8	9
116	Application and development of superparamagnetic nanoparticles in sample pretreatment and immunochromatographic assay. <i>TrAC - Trends in Analytical Chemistry</i> , 2019 , 114, 151-170	14.6	34
115	Lateral Flow Immunoassay Based on Polydopamine-Coated Gold Nanoparticles for the Sensitive Detection of Zearalenone in Maize. <i>ACS Applied Materials & Detection of Searalenone in Maize. ACS Applied Materials & Detection of Searalenone in Maize. ACS Applied Materials & Detection of Searalenone in Maize. ACS Applied Materials & Detection of Searalenone in Maize. Detection of Searalenone in Maize. ACS Applied Materials & Detection of Searalenone in Maize. Detection of S</i>	9.5	67
114	Bioinspired Production of Noniridescent Structural Colors by Adhesive Melanin-like Particles. <i>Langmuir</i> , 2019 , 35, 9878-9884	4	13
113	Size-Controllable Magnetic Iron Oxide Nanorods for Biomarker Targeting and Improving Microfluidic Mixing <i>ACS Applied Bio Materials</i> , 2019 , 2, 3362-3371	4.1	4
112	Quantitative Analysis of Major Metals in Agricultural Biochar Using Laser-Induced Breakdown Spectroscopy with an Adaboost Artificial Neural Network Algorithm. <i>Molecules</i> , 2019 , 24,	4.8	8
111	Functional Macromolecule-Enabled Colloidal Synthesis: From Nanoparticle Engineering to Multifunctionality. <i>Advanced Materials</i> , 2019 , 31, e1902733	24	21
110	Self-Assembly of Polymer-Coated Plasmonic Nanocrystals: From Synthetic Approaches to Practical Applications. <i>Macromolecular Rapid Communications</i> , 2019 , 40, e1800613	4.8	10
109	Dynamic Magnetic Nanomixers for Improved Microarray Assays by Eliminating Diffusion Limitation. <i>Advanced Healthcare Materials</i> , 2019 , 8, e1801022	10.1	9
108	Revisiting Metal Electrodeposition in Porous Anodic Alumina: Toward Tailored Preparation of Metal Nanotube Arrays. <i>Journal of the Electrochemical Society</i> , 2018 , 165, D129-D134	3.9	6
107	In Vitro and In Vivo Photothermal Cancer Therapeutic Effects of Gold Nanorods Modified with Mushroom EGlucan. <i>Journal of Agricultural and Food Chemistry</i> , 2018 , 66, 4091-4098	5.7	25
106	Compact Plasmonic Blackbody for Cancer Theranosis in the Near-Infrared II Window. <i>ACS Nano</i> , 2018 , 12, 2643-2651	16.7	209
105	A core/shell structured tubular graphene nanoflake-coated polypyrrole hybrid for all-solid-state flexible supercapacitors. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 3913-3918	13	69
104	Smart Sensing Based on DNA-Metal Interaction Enables a Label-Free and Resettable Security Model of Electrochemical Molecular Keypad Lock. <i>ACS Sensors</i> , 2018 , 3, 54-58	9.2	6
103	Large-Scale Noniridescent Structural Color Printing Enabled by Infiltration-Driven Nonequilibrium Colloidal Assembly. <i>Advanced Materials</i> , 2018 , 30, 1705667	24	86

102	Three-dimensional graphene biointerface with extremely high sensitivity to single cancer cell monitoring. <i>Biosensors and Bioelectronics</i> , 2018 , 105, 22-28	11.8	44
101	Nacre Mimetic with Embedded Silver Nanowire for Resistive Heating. <i>ACS Applied Nano Materials</i> , 2018 , 1, 940-952	5.6	12
100	Magnetic nanochain integrated microfluidic biochips. <i>Nature Communications</i> , 2018 , 9, 1743	17.4	60
99	Raman-encoded, multivalent glycan-nanoconjugates for traceable specific binding and killing of bacteria. <i>Biomaterials Science</i> , 2018 , 6, 1339-1346	7.4	13
98	Evaluation of Controlled Release Urea on the Dynamics of Nitrate, Ammonium, and Its Nitrogen Release in Black Soils of Northeast China. <i>International Journal of Environmental Research and Public Health</i> , 2018 , 15,	4.6	13
97	Construction of Metal-Organic Framework/Conductive Polymer Hybrid for All-Solid-State Fabric Supercapacitor. <i>ACS Applied Materials & Supercapacitor</i> , 10, 18021-18028	9.5	120
96	Block Copolymer Nanoparticles Remove Biofilms of Drug-Resistant Gram-Positive Bacteria by Nanoscale Bacterial Debridement. <i>Nano Letters</i> , 2018 , 18, 4180-4187	11.5	81
95	Zwitterionic Polymer Modified Porous Carbon for High-Performance and Antifouling Capacitive Desalination. <i>ACS Applied Materials & Samp; Interfaces</i> , 2018 , 10, 33564-33573	9.5	16
94	Hydrogel Effects Rapid Biofilm Debridement with ex situ Contact-Kill to Eliminate Multidrug Resistant Bacteria in vivo. <i>ACS Applied Materials & Description of the State of t</i>	9.5	34
93	2D nanomaterials based electrochemical biosensors for cancer diagnosis. <i>Biosensors and Bioelectronics</i> , 2017 , 89, 136-151	11.8	147
92	Using Diphenylphosphoryl Azide (DPPA) for the Facile Synthesis of Biodegradable Antiseptic Random Copolypeptides. <i>Macromolecular Rapid Communications</i> , 2017 , 38, 1600601	4.8	5
91	Cobalt Phosphide Double-Shelled Nanocages: Broadband Light-Harvesting Nanostructures for Efficient Photothermal Therapy and Self-Powered Photoelectrochemical Biosensing. <i>Small</i> , 2017 , 13, 1700798	11	51
90	Dendronized Semiconducting Polymer as Photothermal Nanocarrier for Remote Activation of Gene Expression. <i>Angewandte Chemie</i> , 2017 , 129, 9283-9287	3.6	47
89	Dendronized Semiconducting Polymer as Photothermal Nanocarrier for Remote Activation of Gene Expression. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 9155-9159	16.4	123
88	Double-Layered Plasmonic-Magnetic Vesicles by Self-Assembly of Janus Amphiphilic Gold-Iron(II,III) Oxide Nanoparticles. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 8110-8114	16.4	88
87	Double-Layered PlasmonicMagnetic Vesicles by Self-Assembly of Janus Amphiphilic GoldIron(II,III) Oxide Nanoparticles. <i>Angewandte Chemie</i> , 2017 , 129, 8222-8226	3.6	23
86	Synthesis and Antibacterial Study of Sulfobetaine/Quaternary Ammonium-Modified Star-Shaped Poly[2-(dimethylamino)ethyl methacrylate]-Based Copolymers with an Inorganic Core. <i>Biomacromolecules</i> , 2017 , 18, 44-55	6.9	41
85	Stable and Biocompatible Mushroom EGlucan Modified Gold Nanorods for Cancer Photothermal Therapy. <i>Journal of Agricultural and Food Chemistry</i> , 2017 , 65, 9529-9536	5.7	21

84	In Vivo Anti-Biofilm and Anti-Bacterial Non-Leachable Coating Thermally Polymerized on Cylindrical Catheter. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 1, 9, 36269-36280	9.5	69
83	Nanoparticles of Short Cationic Peptidopolysaccharide Self-Assembled by Hydrogen Bonding with Antibacterial Effect against Multidrug-Resistant Bacteria. <i>ACS Applied Materials & Description</i> (2017, 9, 38288-38303)	9.5	53
82	Transdermal Delivery of Anti-Obesity Compounds to Subcutaneous Adipose Tissue with Polymeric Microneedle Patches. <i>Small Methods</i> , 2017 , 1, 1700269	12.8	54
81	Molecular afterglow imaging with bright, biodegradable polymer nanoparticles. <i>Nature Biotechnology</i> , 2017 , 35, 1102-1110	44.5	571
80	Homoepitaxial growth on semiconductor nanocrystals for efficient and stable visible-light photocatalytic hydrogen evolution. <i>Nanoscale</i> , 2017 , 9, 17794-17801	7.7	7
79	Thiophene-derived polymer dots for imaging endocytic compartments in live cells and broad-spectrum bacterial killing. <i>Materials Chemistry Frontiers</i> , 2017 , 1, 152-157	7.8	10
78	Printing graphene-carbon nanotube-ionic liquid gel on graphene paper: Towards flexible electrodes with efficient loading of PtAu alloy nanoparticles for electrochemical sensing of blood glucose. <i>Analytica Chimica Acta</i> , 2016 , 903, 61-8	6.6	54
77	Ultrasonic-electrodeposition of PtPd alloy nanoparticles on ionic liquid-functionalized graphene paper: towards a flexible and versatile nanohybrid electrode. <i>Nanoscale</i> , 2016 , 8, 1523-34	7.7	63
76	Ultrasensitive Profiling of Metabolites Using Tyramine-Functionalized Graphene Quantum Dots. <i>ACS Nano</i> , 2016 , 10, 3622-9	16.7	124
75	Graphene Paper Decorated with a 2D Array of Dendritic Platinum Nanoparticles for Ultrasensitive Electrochemical Detection of Dopamine Secreted by Live Cells. <i>Chemistry - A European Journal</i> , 2016 , 22, 5204-10	4.8	52
74	Robust Nanoparticle-DNA Conjugates Based on Mussel-Inspired Polydopamine Coating for Cell Imaging and Tailored Self-Assembly. <i>Bioconjugate Chemistry</i> , 2016 , 27, 815-23	6.3	32
73	Nanomaterial based electrochemical sensors for in vitro detection of small molecule metabolites. <i>Biotechnology Advances</i> , 2016 , 34, 234-49	17.8	69
72	From structures to functions: insights into exosomes as promising drug delivery vehicles. <i>Biomaterials Science</i> , 2016 , 4, 910-21	7.4	77
71	Cationic polycarbonate-grafted superparamagnetic nanoparticles with synergistic dual-modality antimicrobial activity. <i>Biomaterials Science</i> , 2016 , 4, 871-9	7.4	38
70	Polydopamine-Enabled Approach toward Tailored Plasmonic Nanogapped Nanoparticles: From Nanogap Engineering to Multifunctionality. <i>ACS Nano</i> , 2016 , 10, 11066-11075	16.7	90
69	Multilayered semiconducting polymer nanoparticles with enhanced NIR fluorescence for molecular imaging in cells, zebrafish and mice. <i>Chemical Science</i> , 2016 , 7, 5118-5125	9.4	97
68	Flexible 3D Nanoporous Graphene for Desalination and Bio-decontamination of Brackish Water via Asymmetric Capacitive Deionization. <i>ACS Applied Materials & Desalination (Capacitive Deionization)</i> 8, 25313-25	9.5	99
67	One-step synthesis of three-dimensional porous ionic liquidarbon nanotubegraphene gel and MnO2graphene gel as freestanding electrodes for asymmetric supercapacitors. <i>RSC Advances</i> , 2015 , 5, 10178-10186	3.7	65

(2013-2015)

66	Plasmonic Vesicles of Amphiphilic Nanocrystals: Optically Active Multifunctional Platform for Cancer Diagnosis and Therapy. <i>Accounts of Chemical Research</i> , 2015 , 48, 2506-15	24.3	137
65	Surface enhanced Raman scattering by graphene-nanosheet-gapped plasmonic nanoparticle arrays for multiplexed DNA detection. <i>Nanoscale</i> , 2015 , 7, 12606-13	7.7	46
64	Versatile Core-Shell Nanoparticle@Metal-Organic Framework Nanohybrids: Exploiting Mussel-Inspired Polydopamine for Tailored Structural Integration. <i>ACS Nano</i> , 2015 , 9, 6951-60	16.7	189
63	Sandwich-structured nanohybrid paper based on controllable growth of nanostructured MnO2 on ionic liquid functionalized graphene paper as a flexible supercapacitor electrode. <i>Nanoscale</i> , 2015 , 7, 7790-801	7.7	62
62	Multifunctional Magnetic Nanochains: Exploiting Self-Polymerization and Versatile Reactivity of Mussel-Inspired Polydopamine. <i>Chemistry of Materials</i> , 2015 , 27, 3071-3076	9.6	65
61	Incorporating nanoporous polyaniline into layer-by-layer ionic liquid-carbon nanotube-graphene paper: towards freestanding flexible electrodes with improved supercapacitive performance. <i>Nanotechnology</i> , 2015 , 26, 374002	3.4	26
60	High-Performance Capacitive Deionization Disinfection of Water with Graphene Oxide-graft-Quaternized Chitosan Nanohybrid Electrode Coating. <i>ACS Nano</i> , 2015 , 9, 10142-57	16.7	74
59	2D and 3D graphene materials: Preparation and bioelectrochemical applications. <i>Biosensors and Bioelectronics</i> , 2015 , 65, 404-19	11.8	146
58	A corrosion-protective coating based on a solution-processable polymer-grafted graphene oxide nanocomposite. <i>Corrosion Science</i> , 2015 , 98, 500-506	6.8	140
57	Real-time electrochemical detection of hydrogen peroxide secretion in live cells by Pt nanoparticles decorated graphene-carbon nanotube hybrid paper electrode. <i>Biosensors and Bioelectronics</i> , 2015 , 68, 358-364	11.8	160
56	Interfacial assembly of mussel-inspired au@ag@ polydopamine core-shell nanoparticles for recyclable nanocatalysts. <i>Advanced Materials</i> , 2014 , 26, 701-5	24	171
55	In situ synthesis of large-area single sub-10 nm nanoparticle arrays by polymer pen lithography. <i>Nanoscale</i> , 2014 , 6, 749-52	7.7	36
54	SERS-encoded nanogapped plasmonic nanoparticles: growth of metallic nanoshell by templating redox-active polymer brushes. <i>Journal of the American Chemical Society</i> , 2014 , 136, 6838-41	16.4	154
53	Stimuli-responsive plasmonic core-satellite assemblies: i-motif DNA linker enabled intracellular pH sensing. <i>Chemical Communications</i> , 2013 , 49, 5739-41	5.8	52
52	Biodegradable theranostic plasmonic vesicles of amphiphilic gold nanorods. ACS Nano, 2013, 7, 9947-60	0 16.7	153
51	Immobilizing CdS quantum dots and dendritic Pt nanocrystals on thiolated graphene nanosheets toward highly efficient photocatalytic H2 evolution. <i>Nanoscale</i> , 2013 , 5, 9830-8	7.7	95
50	Mussel-inspired synthesis of polydopamine-functionalized graphene hydrogel as reusable adsorbents for water purification. <i>ACS Applied Materials & amp; Interfaces</i> , 2013 , 5, 425-32	9.5	543
49	Photolabile plasmonic vesicles assembled from amphiphilic gold nanoparticles for remote-controlled traceable drug delivery. <i>Nanoscale</i> , 2013 , 5, 5816-24	7.7	63

48	Freestanding graphene paper decorated with 2D-assembly of Au@Pt nanoparticles as flexible biosensors to monitor live cell secretion of nitric oxide. <i>Biosensors and Bioelectronics</i> , 2013 , 49, 71-8	11.8	100
47	Growth of coral-like PtAu-MnO2 binary nanocomposites on free-standing graphene paper for flexible nonenzymatic glucose sensors. <i>Biosensors and Bioelectronics</i> , 2013 , 41, 417-23	11.8	120
46	High Refractive Index Inorganic Drganic Interpenetrating Polymer Network (IPN) Hydrogel Nanocomposite toward Artificial Cornea Implants. <i>ACS Macro Letters</i> , 2012 , 1, 876-881	6.6	37
45	Cytotoxicity evaluation of oxidized single-walled carbon nanotubes and graphene oxide on human hepatoma HepG2 cells: an iTRAQ-coupled 2D LC-MS/MS proteome analysis. <i>Toxicological Sciences</i> , 2012 , 126, 149-61	4.4	119
44	Flexible all-solid-state asymmetric supercapacitors based on free-standing carbon nanotube/graphene and Mn3O4 nanoparticle/graphene paper electrodes. <i>ACS Applied Materials & Amp; Interfaces</i> , 2012 , 4, 7020-6	9.5	238
43	Self-assembled plasmonic vesicles of SERS-encoded amphiphilic gold nanoparticles for cancer cell targeting and traceable intracellular drug delivery. <i>Journal of the American Chemical Society</i> , 2012 , 134, 13458-69	16.4	369
42	Coating graphene paper with 2D-assembly of electrocatalytic nanoparticles: a modular approach toward high-performance flexible electrodes. <i>ACS Nano</i> , 2012 , 6, 100-10	16.7	183
41	High-performance asymmetric supercapacitor based on graphene hydrogel and nanostructured MnO2. <i>ACS Applied Materials & Districtory</i> (1997) MnO2. <i>ACS Applied </i>	9.5	612
40	Growth of Copper Nanocubes on Graphene Paper as Free-Standing Electrodes for Direct Hydrazine Fuel Cells. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 7719-7725	3.8	104
39	Growth of Metal Metal Oxide Nanostructures on Freestanding Graphene Paper for Flexible Biosensors. <i>Advanced Functional Materials</i> , 2012 , 22, 2487-2494	15.6	224
38	Cationic peptidopolysaccharides show excellent broad-spectrum antimicrobial activities and high selectivity. <i>Advanced Materials</i> , 2012 , 24, 4130-7	24	193
37	Plasmonic vesicles of amphiphilic gold nanocrystals: self-assembly and external-stimuli-triggered destruction. <i>Journal of the American Chemical Society</i> , 2011 , 133, 10760-3	16.4	220
36	Quantum dots with phenylboronic acid tags for specific labeling of sialic acids on living cells. <i>Analytical Chemistry</i> , 2011 , 83, 1124-30	7.8	121
35	One-step electrochemical synthesis of PtNi nanoparticle-graphene nanocomposites for nonenzymatic amperometric glucose detection. <i>ACS Applied Materials & amp; Interfaces</i> , 2011 , 3, 3049-5	57 ^{9.5}	323
34	Antibody conjugated magnetic iron oxide nanoparticles for cancer cell separation in fresh whole blood. <i>Biomaterials</i> , 2011 , 32, 9758-65	15.6	275
33	Labeling and Tracking P2 Purinergic Receptors in Living Cells Using ATP-Conjugated Quantum Dots. <i>Advanced Functional Materials</i> , 2011 , 21, 2776-2780	15.6	10
32	SERS-Active Nanoparticles for Sensitive and Selective Detection of Cadmium Ion (Cd2+). <i>Chemistry of Materials</i> , 2011 , 23, 4756-4764	9.6	150
31	Self-Assembled Plasmonic Dimers of Amphiphilic Gold Nanocrystals. <i>Journal of Physical Chemistry Letters</i> , 2011 , 2, 2258-2262	6.4	66

(2005-2010)

30	Responsive plasmonic assemblies of amphiphilic nanocrystals at oil-water interfaces. <i>ACS Nano</i> , 2010 , 4, 6098-104	16.7	107
29	Quantum Dots with Multivalent and Compact Polymer Coatings for Efficient Fluorescence Resonance Energy Transfer and Self-Assembled Biotagging. <i>Chemistry of Materials</i> , 2010 , 22, 4372-4378	₃ 9.6	47
28	Proton-Resistant Quantum Dots: Stability in Gastrointestinal Fluids and Implications for Oral Delivery of Nanoparticle Agents. <i>Nano Research</i> , 2009 , 2, 500-508	10	39
27	Biocompatible polysiloxane-containing diblock copolymer PEO-b-PgammaMPS for coating magnetic nanoparticles. <i>ACS Applied Materials & Mater</i>	9.5	42
26	Molecular imaging of pancreatic cancer in an animal model using targeted multifunctional nanoparticles. <i>Gastroenterology</i> , 2009 , 136, 1514-25.e2	13.3	132
25	Single chain epidermal growth factor receptor antibody conjugated nanoparticles for in vivo tumor targeting and imaging. <i>Small</i> , 2009 , 5, 235-43	11	278
24	Gold nanoparticles coated with a thermosensitive hyperbranched polyelectrolyte: towards smart temperature and pH nanosensors. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 2227-30	16.4	143
23	Gold Nanoparticles Coated with a Thermosensitive Hyperbranched Polyelectrolyte: Towards Smart Temperature and pH Nanosensors. <i>Angewandte Chemie</i> , 2008 , 120, 2259-2262	3.6	9
22	Reexamining the Effects of Particle Size and Surface Chemistry on the Magnetic Properties of Iron Oxide Nanocrystals: New Insights into Spin Disorder and Proton Relaxivity. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 8127-8131	3.8	223
21	Bioconjugated quantum dots for in vivo molecular and cellular imaging. <i>Advanced Drug Delivery Reviews</i> , 2008 , 60, 1226-1240	18.5	965
20	Etching colloidal gold nanocrystals with hyperbranched and multivalent polymers: a new route to fluorescent and water-soluble atomic clusters. <i>Journal of the American Chemical Society</i> , 2007 , 129, 241	2 ¹ 6.4	349
19	Cell-penetrating quantum dots based on multivalent and endosome-disrupting surface coatings. <i>Journal of the American Chemical Society</i> , 2007 , 129, 3333-8	16.4	408
18	A systematic examination of surface coatings on the optical and chemical properties of semiconductor quantum dots. <i>Physical Chemistry Chemical Physics</i> , 2006 , 8, 3895-903	3.6	383
17	The water/oil interface: the emerging horizon for self-assembly of nanoparticles. <i>Soft Matter</i> , 2005 , 1, 412-416	3.6	166
16	pH-responsive capsules derived from nanocrystal templating. <i>Langmuir</i> , 2005 , 21, 11495-9	4	50
15	Magnetic colloidosomes derived from nanoparticle interfacial self-assembly. <i>Nano Letters</i> , 2005 , 5, 949	- 52 1.5	252
14	Colloidally stable amphibious nanocrystals derived from poly{[2-(dimethylamino)ethyl] methacrylate} capping. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 1717-20	16.4	72
13	Colloidally Stable Amphibious Nanocrystals Derived from Poly{[2-(dimethylamino)ethyl] Methacrylate} Capping. <i>Angewandte Chemie</i> , 2005 , 117, 1745-1748	3.6	9

12	pH-dependent multiple morphologies of novel aggregates of carboxyl-terminated polymide in water. <i>European Physical Journal E</i> , 2004 , 15, 211-5	1.5	38
11	Directing self-assembly of nanoparticles at water/oil interfaces. <i>Angewandte Chemie - International Edition</i> , 2004 , 43, 5639-42	16.4	393
10	Directing Self-Assembly of Nanoparticles at Water/Oil Interfaces. <i>Angewandte Chemie</i> , 2004 , 116, 5757	-5,7660	73
9	Self-Assembly of Rigid and Coil Polymers into Hollow Spheres in Their Common Solvent. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 550-555	3.4	66
8	Structural Factors of Rigidicoil Polymer Pairs Influencing Their Self-Assembly in Common Solvent. Journal of Physical Chemistry B, 2004 , 108, 16023-16029	3.4	44
7	Macromolecular assembly: from irregular aggregates to regular nanostructures. <i>Macromolecular Symposia</i> , 2003 , 195, 165-170	0.8	7
6	Structural transformation of cytochrome c and apo cytochrome c induced by sulfonated polystyrene. <i>Biomacromolecules</i> , 2003 , 4, 1293-300	6.9	52
5	A novel approach to polymeric hollow nanospheres with stabilized structure. <i>Chemical Communications</i> , 2003 , 496-7	5.8	38
4	Synthesis of amphiphilic block@raft copolymers [poly(styrene-b-ethylene-co-butylene-b-styrene)-g-poly(acrylic acid)] and their aggregation in water. <i>Journal of Polymer Science Part A</i> , 2002 , 40, 1253-1266	2.5	31
3	Block-Copolymer-Free Strategy for Preparing Micelles and Hollow Spheres: Self-Assembly of Poly(4-vinylpyridine) and Modified Polystyrene. <i>Macromolecules</i> , 2002 , 35, 5980-5989	5.5	75
2	Fluorocarbon Modified Nitroxide: A New Electron Spin Resonance Spin Probe for Micellization of Surfactants. <i>Langmuir</i> , 2001 , 17, 5685-5687	4	8
1	Self-assembly of unlike homopolymers into hollow spheres in nonselective solvent. <i>Journal of the American Chemical Society</i> , 2001 , 123, 12097-8	16.4	129