Lian R. Hutchings

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8541437/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neutron-Mapping Polymer Flow: Scattering, Flow Visualization, and Molecular Theory. Science, 2003, 301, 1691-1695.	6.0	164
2	Electrospinning Superhydrophobic Fibers Using Surface Segregating End-Functionalized Polymer Additives. Macromolecules, 2011, 44, 6461-6470.	2.2	115
3	HyperMacs:Â Highly Branched Polymers Prepared by the Polycondensation of AB2Macromonomers, Synthesis and Characterization. Macromolecules, 2005, 38, 5970-5980.	2.2	95
4	HyperMacs to HyperBlocks: A Novel Class of Branched Thermoplastic Elastomer. Macromolecules, 2009, 42, 8675-8687.	2.2	78
5	Monomer Sequence Control via Living Anionic Copolymerization: Synthesis of Alternating, Statistical, and Telechelic Copolymers and Sequence Analysis by MALDI ToF Mass Spectrometry. Macromolecules, 2015, 48, 610-628.	2.2	77
6	DendriMacs. Well-Defined Dendritically Branched Polymers Synthesized by an Iterative Convergent Strategy Involving the Coupling Reaction of AB2Macromonomers. Macromolecules, 2006, 39, 2144-2152.	2.2	75
7	Constriction flows of monodisperse linear entangled polymers: Multiscale modeling and flow visualization. Journal of Rheology, 2005, 49, 501-522.	1.3	72
8	DendriMacs and HyperMacs – emerging as more than just model branched polymers Soft Matter, 2008, 4, 2150.	1.2	70
9	HyperMacs – long chain hyperbranched polymers: A dramatically improved synthesis and qualitative rheological analysis. European Polymer Journal, 2008, 44, 665-676.	2.6	56
10	Synthesis and Dynamic Rheological Behavior of Polybutadiene Star Polymers. Macromolecules, 1996, 29, 5717-5722.	2.2	55
11	Kinetic Control of Monomer Sequence Distribution in Living Anionic Copolymerisation. Macromolecular Rapid Communications, 2011, 32, 233-237.	2.0	54
12	Neutron Reflectivity Studies at Liquidâ^'Liquid Interfaces:Â Methodology and Analysis. Langmuir, 2001, 17, 140-145.	1.6	53
13	Synthesis of Block Copolymers by Changing Living Anionic Polymerization into Living Ring Opening Metathesis Polymerization. Macromolecules, 2004, 37, 2035-2040.	2.2	50
14	Measuring and Predicting the Dynamics of Linear Monodisperse Entangled Polymers in Rapid Flow through an Abrupt Contraction. A Small Angle Neutron Scattering Study. Macromolecules, 2006, 39, 2700-2709.	2.2	50
15	Towards bio-based tapered block copolymers: the behaviour of myrcene in the statistical anionic copolymerisation. Polymer Chemistry, 2019, 10, 1213-1220.	1.9	49
16	Modifying and managing the surface properties of polymers. Polymer International, 2008, 57, 163-170.	1.6	47
17	Rouse and Reptation Dynamics of Linear Polybutadiene Chains Studied by2H NMR Transverse Relaxation. Macromolecules, 1998, 31, 8871-8877.	2.2	44
18	Multi-End-Functionalized Polymers:Â Additives to Modify Polymer Properties at Surfaces and Interfaces. Macromolecules, 2007, 40, 1969-1980.	2.2	39

#	Article	IF	CITATIONS
19	Dynamics of Star Polymers in Fast Extensional Flow and Stress Relaxation. Macromolecules, 2016, 49, 6694-6699.	2.2	36
20	Synthesis and characterisation of poly(sodium 4-styrenesulfonate) combs. Polymer, 2006, 47, 3455-3463.	1.8	35
21	In Silico Molecular Design, Synthesis, Characterization, and Rheology of Dendritically Branched Polymers: Closing the Design Loop. ACS Macro Letters, 2012, 1, 404-408.	2.3	35
22	Self-Diffusion and Viscoelastic Measurements of Polystyrene Star Polymers. Macromolecules, 2006, 39, 1290-1296.	2.2	33
23	Rheological properties of HyperMacs—longâ€chain branched analogues of hyperbranched polymers. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 2762-2769.	2.4	33
24	Complex Branched Polymers for Structure–Property Correlation Studies: The Case for Temperature Gradient Interaction Chromatography Analysis. Macromolecules, 2012, 45, 5621-5639.	2.2	33
25	A Facile Route to Synthesize Wellâ€Defined Polybutadiene DendriMacs. Macromolecular Rapid Communications, 2008, 29, 633-637.	2.0	32
26	The generation of end group information from poly(styrene)s by means of matrix-assisted laser desorption/ionisation-collision induced dissociation. Polymer, 2000, 41, 7437-7450.	1.8	31
27	HyperMacs. Long Chain Branched Analogues of Hyperbranched Polymers Prepared by the Polycondensation of AB2 Macromonomers. Macromolecular Symposia, 2006, 240, 56-67.	0.4	31
28	Influence of Architecture on Arm Dimensions and Interaction Parameters in Polybutadiene Star Polymers. Macromolecules, 1999, 32, 880-891.	2.2	30
29	Solvent Accelerated Polymer Diffusion in Thin Films. Macromolecules, 2005, 38, 4339-4344.	2.2	30
30	A Deuterium NMR Study of Selectively Labeled Polybutadiene Star Polymers. Macromolecules, 2000, 33, 7101-7106.	2.2	29
31	Structure of a Spread Film of a Polybutadieneâ^'Poly(ethylene oxide) Linear Diblock Copolymer at the Airâ^'Water Interface As Determined by Neutron Reflectometry. Langmuir, 2001, 17, 131-139.	1.6	27
32	Surface-active fluorocarbon end-functionalized polylactides. Polymer, 2006, 47, 8116-8122.	1.8	26
33	Aggregation, Adsorption, and Surface Properties of Multiply End-Functionalized Polystyrenes. Langmuir, 2007, 23, 4405-4413.	1.6	26
34	Chain Architecture as an Orthogonal Parameter To Influence Block Copolymer Morphology. Synthesis and Characterization of Hyperbranched Block Copolymers: HyperBlocks. Macromolecules, 2015, 48, 8806-8822.	2.2	26
35	The long-chain dynamics in a model homopolymer blend under strong flow: small-angle neutron scattering and theory. Soft Matter, 2009, 5, 2383.	1.2	25
36	Monomer Sequencing in Living Anionic Polymerization Using Kinetic Control. Macromolecular Symposia, 2013, 323, 42-50.	0.4	25

#	Article	IF	CITATIONS
37	Roles of Chain Length, Chain Architecture, and Time in the Initiation of Visible Crazes in Polystyrene. Macromolecules, 2008, 41, 4484-4491.	2.2	23
38	Synthesis and surface activity of high and low surface energy multi-end functional polybutadiene additives. Soft Matter, 2012, 8, 3487.	1.2	23
39	Surface Modification of Polyethylene with Multi-End-Functional Polyethylene Additives. Langmuir, 2012, 28, 5125-5137.	1.6	22
40	Multi-end functionalised polymer additives synthesised by living anionic polymerisation—the impact of additive molecular structure upon surface properties. Polymer Chemistry, 2011, 2, 851.	1.9	21
41	Discussion on "Aperiodic Copolymers― ACS Macro Letters, 2016, 5, 1-3.	2.3	21
42	Fire and Forget! Oneâ€Shot Synthesis and Characterization of Blockâ€Like Statistical Terpolymers via Living Anionic Polymerization. Journal of Polymer Science Part A, 2019, 57, 382-394.	2.5	21
43	The metathetic degradation of polyisoprene and polybutadiene in block copolymers using Grubbs second generation catalyst. Polymer Degradation and Stability, 2011, 96, 1074-1080.	2.7	20
44	Novel multi end-functionalised polymers. Additives to modify polymer properties at surfaces and interfaces. Soft Matter, 2006, 2, 126-128.	1.2	19
45	Synthesis of deuterobutadiene-butadiene AB 2 and AB 3 miktoarm star copolymers. Polymer Bulletin, 1998, 41, 283-289.	1.7	17
46	Block Copolymers by the Conversion of Living Lithium Initiated Anionic Polymerization into Living Ruthenium ROMP. Macromolecules, 2006, 39, 5639-5645.	2.2	16
47	Recoverable surface modification using dendritically fluorocarbon-functionalized poly(methyl) Tj ETQq1 1 0.784	314.ggBT /	Overlock 10 1
48	Neutron reflectometry investigation of polymer–polymer reactions at the interface between immiscible polymers. Polymer, 2003, 44, 7689-7700.	1.8	15
49	Understanding copolymerisation kinetics for the design of functional copolymers <i>via</i> free radical polymerisation. Polymer Chemistry, 2019, 10, 5665-5675.	1.9	15
50	Synthesis and temperature gradient interaction chromatography of model asymmetric star polymers by the "macromonomer―approach. European Polymer Journal, 2013, 49, 2769-2784.	2.6	14
51	Suspension polymerization of poly(methyl methacrylate)/clay nanocomposites. Journal of Applied Polymer Science, 2009, 113, 1307-1315.	1.3	13
52	pH-Controlled Polymer Surface Segregation. Langmuir, 2009, 25, 3184-3188.	1.6	13
53	HyperMacs – Highly Branched Network Precursors or Semiâ€Interpenetrating Networks?. Macromolecular Symposia, 2010, 291-292, 26-35.	0.4	13
54	Neutron flow-mapping: Multiscale modelling opens a new experimental window. Soft Matter, 2009, 5, 4426.	1.2	12

#	Article	IF	CITATIONS
55	Synthesis and characterisation of end-functionalised poly(N-vinylpyrrolidone) additives by reversible addition–fragmentation transfer polymerisation. Polymer Chemistry, 2013, 4, 2815.	1.9	12
56	Modifying polyester surfaces with incompatible polymer additives. Reactive and Functional Polymers, 2015, 89, 40-48.	2.0	12
57	Capillary Wave Properties of a Spread Film of a Polybutadieneâ^'Poly(ethylene oxide) Block Copolymer:Â 1. Airâ^'Water Interface. Langmuir, 2001, 17, 5297-5304.	1.6	11
58	Surface adsorption of polar end-functionalised polystyrenes. Soft Matter, 2006, 2, 981.	1.2	11
59	Film thickness effects on the distribution of high-molecular-weight heterotelechelic polymers. European Physical Journal E, 2002, 8, 121-128.	0.7	10
60	Synthesis of well-defined graft co-polymers via coupled living anionic and living ring-opening metathesis polymerisation. Designed Monomers and Polymers, 2004, 7, 619-632.	0.7	10
61	Multihydroxyl End Functional Polyethylenes: Synthesis, Bulk and Interfacial Properties of Polymer Surfactants. Macromolecules, 2014, 47, 2062-2071.	2.2	10
62	Capillary Wave Properties of a Spread Film of a Polybutadieneâ^'Poly(ethylene oxide) Block Copolymer:Â 2. Cyclohexaneâ~'Water Interface. Langmuir, 2001, 17, 5305-5313.	1.6	9
63	Interface development in polycarbonate/poly(methyl methacrylate) bilayer films. Journal of Polymer Science, Part B: Polymer Physics, 2001, 39, 2351-2362.	2.4	9
64	The Roles of Blending and of Molecular Weight Distribution on Craze Initiation. Macromolecules, 2017, 50, 9507-9514.	2.2	9
65	Partitioning of a heterotelechelic polystyrene to separate interfaces of thin films. European Physical Journal E, 2001, 5, 451-464.	0.7	8
66	Endâ€Functionalized Chains via Anionic Polymerization: Can the Problems with Using Diphenylethylene Derivatives be Solved by using Bisphenol F?. Macromolecular Chemistry and Physics, 2018, 219, 1700386.	1.1	8
67	Normal-phase (temperature gradient) interaction chromatography – A powerful tool for the characterisation of high molecular weight chain-end functionalised polymers. European Polymer Journal, 2015, 73, 105-115.	2.6	7
68	The self-assembly and thermoresponsivity of poly(isoprene-b-methyl methacrylate) copolymers in non-polar solvents. European Polymer Journal, 2021, 156, 110631.	2.6	6
69	Chain Deformation in Entangled Polymer Melts at Re-entrant Corners. Macromolecules, 2010, 43, 1539-1542.	2.2	5
70	Tales of the unexpected. The non-random statistical copolymerisation of myrcene and styrene in the presence of a polar modifier. Polymer Chemistry, 2020, 11, 7020-7025.	1.9	5
71	Synthesis and characterisation of a mussel-inspired hydrogel film coating for biosensors. European Polymer Journal, 2021, 153, 110503.	2.6	5
72	Small-Angle Neutron Scattering from Single Arm Labeled Polybutadiene Star Polymers in Dilute Solution. Macromolecules, 2001, 34, 5571-5578.	2.2	4

#	Article	IF	CITATIONS
73	Polymer Blends in a Contractionâ [°] Expansion Flow. Macromolecules, 2006, 39, 7607-7616.	2.2	4
74	Temperature Gradient Interaction Chromatography: A Perspective. Chromatographia, 2021, 84, 813-818.	0.7	4
75	Synthesis of α,ω-macrozwitterionic polymers. End group analysis by SEC. Polymer, 2000, 41, 8175-8182.	1.8	3
76	Macromolecular engineering: a synthetic perspective. Plastics, Rubber and Composites, 2006, 35, 403-409.	0.9	3
77	Spontaneous Nanoparticle Dispersal in Polybutadiene by Brush-Forming End-Functional Polymers. Macromolecules, 2016, 49, 1434-1443.	2.2	3
78	Synthesis and coupling of ABx polysiloxane macromonomers to form highly branched polysiloxanes. European Polymer Journal, 2019, 113, 254-259.	2.6	3
79	Structure of flexible telechelic zwitterions in solutions. Physica B: Condensed Matter, 2004, 350, E975-E977.	1.3	2
80	Nonsolvent Annealing Polymer Films with Ionic Liquids. Langmuir, 2010, 26, 15486-15493.	1.6	2
81	Hyperbranched Polymers. Synthesis, Properties, and Applications. Herausgegeben von Deyue Yan, Chao Gao und Holger Frey Angewandte Chemie, 2012, 124, 2593-2593.	1.6	1
82	A Novel Method of Extraction of Blend Component Structure from SANS Measurements of Homopolymer Bimodal Blends. Macromolecular Chemistry and Physics, 2014, 215, 859-866.	1.1	1
83	Rheological Properties of HyperMacs—Long Chain Branched Analogues of Hyperbranched Polymers. AIP Conference Proceedings, 2008, , .	0.3	0
84	Neutron Flow-Mapping of Controlled-Architecture Polymer Melts. AIP Conference Proceedings, 2008, ,	0.3	0
85	Romp: The Method of Choice for Precise Macromolecular Engineering and Synthesis of Smart Materials. NATO Science for Peace and Security Series A: Chemistry and Biology, 2009, , 223-236.	0.5	0