
William C Hahn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8541286/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	YAP1 and PRDM14 converge to promote cell survival and tumorigenesis. Developmental Cell, 2022, 57, 212-227.e8.	3.1	9
2	Sparse dictionary learning recovers pleiotropy from human cell fitness screens. Cell Systems, 2022, 13, 286-303.e10.	2.9	18
3	Massively parallel phenotyping of coding variants in cancer with Perturb-seq. Nature Biotechnology, 2022, 40, 896-905.	9.4	44
4	A genome-scale CRISPR screen reveals PRMT1 as a critical regulator of androgen receptor signaling in prostate cancer. Cell Reports, 2022, 38, 110417.	2.9	17
5	PI3K activation allows immune evasion by promoting an inhibitory myeloid tumor microenvironment. , 2022, 10, e003402.		21
6	Phosphate dysregulation via the XPR1–KIDINS220 protein complex is a therapeutic vulnerability in ovarian cancer. Nature Cancer, 2022, 3, 681-695.	5.7	21
7	Serological testing for SARS-CoV-2 antibodies of employees shows low transmission working in a cancer center. PLoS ONE, 2022, 17, e0266791.	1.1	1
8	CREB5 reprograms FOXA1 nuclear interactions to promote resistance to androgen receptor-targeting therapies. ELife, 2022, 11, .	2.8	10
9	Structure–function analysis of the SHOC2–MRAS–PP1C holophosphatase complex. Nature, 2022, 609, 408-415.	13.7	28
10	Cancer research needs a better map. Nature, 2021, 589, 514-516.	13.7	57
11	Functional Genomics Identify Distinct and Overlapping Genes Mediating Resistance to Different Classes of Heterobifunctional Degraders of Oncoproteins. Cell Reports, 2021, 34, 108532.	2.9	54
12	Reprogramming of the FOXA1 cistrome in treatment-emergent neuroendocrine prostate cancer. Nature Communications, 2021, 12, 1979.	5.8	70
13	An expanded universe of cancer targets. Cell, 2021, 184, 1142-1155.	13.5	135
14	A Leucine-Rich Repeat Protein Provides a SHOC2 the RAS Circuit: a Structure-Function Perspective. Molecular and Cellular Biology, 2021, 41, .	1.1	15
15	A first-generation pediatric cancer dependency map. Nature Genetics, 2021, 53, 529-538.	9.4	76
16	<i>FGFR2</i> Extracellular Domain In-Frame Deletions Are Therapeutically Targetable Genomic Alterations That Function as Oncogenic Drivers in Cholangiocarcinoma. Cancer Discovery, 2021, 11, 2488-2505.	7.7	46
17	Predicting cell health phenotypes using image-based morphology profiling. Molecular Biology of the Cell, 2021, 32, 995-1005.	0.9	71
18	Targeting p130Cas- and microtubule-dependent MYC regulation sensitizes pancreatic cancer to ERK MAPK inhibition. Cell Reports, 2021, 35, 109291.	2.9	15

William C Hahn

#	Article	IF	CITATIONS
19	Haplotype-resolved germline and somatic alterations in renal medullary carcinomas. Genome Medicine, 2021, 13, 114.	3.6	5
20	SMAD4 represses FOSL1 expression and pancreatic cancer metastatic colonization. Cell Reports, 2021, 36, 109443.	2.9	23
21	Biologically informed deep neural network for prostate cancer discovery. Nature, 2021, 598, 348-352.	13.7	158
22	Global computational alignment of tumor and cell line transcriptional profiles. Nature Communications, 2021, 12, 22.	5.8	71
23	Microenvironment drives cell state, plasticity, and drug response in pancreatic cancer. Cell, 2021, 184, 6119-6137.e26.	13.5	201
24	Chronos: a cell population dynamics model of CRISPR experiments that improves inference of gene fitness effects. Genome Biology, 2021, 22, 343.	3.8	128
25	Synthetic Lethal Interaction between the ESCRT Paralog Enzymes VPS4A and VPS4B in Cancers Harboring Loss of Chromosome 18q or 16q. Cell Reports, 2020, 33, 108493.	2.9	28
26	Selective USP7 inhibition elicits cancer cell killing through a p53-dependent mechanism. Scientific Reports, 2020, 10, 5324.	1.6	69
27	Discovery of a selective inhibitor of doublecortin like kinase 1. Nature Chemical Biology, 2020, 16, 635-643.	3.9	84
28	Rhabdoid Tumors Are Sensitive to the Protein-Translation Inhibitor Homoharringtonine. Clinical Cancer Research, 2020, 26, 4995-5006.	3.2	14
29	<i>ATM</i> Loss Confers Greater Sensitivity to ATR Inhibition Than PARP Inhibition in Prostate Cancer. Cancer Research, 2020, 80, 2094-2100.	0.4	71
30	STRIPAK directs PP2A activity toward MAP4K4 to promote oncogenic transformation of human cells. ELife, 2020, 9, .	2.8	46
31	Use of Olfactory Receptor Genes As Controls for Genome-Scale CRISPR Functional Genomic Studies to Define Treatment Resistance Mechanisms. Blood, 2020, 136, 36-36.	0.6	2
32	Phase 1 dose-escalation study of momelotinib, a Janus kinase 1/2 inhibitor, combined with gemcitabine and nab-paclitaxel in patients with previously untreated metastatic pancreatic ductal adenocarcinoma. Investigational New Drugs, 2019, 37, 159-165.	1.2	28
33	A dominant-negative effect drives selection of <i>TP53</i> missense mutations in myeloid malignancies. Science, 2019, 365, 599-604.	6.0	265
34	Small-Molecule and CRISPR Screening Converge to Reveal Receptor Tyrosine Kinase Dependencies in Pediatric Rhabdoid Tumors. Cell Reports, 2019, 28, 2331-2344.e8.	2.9	24
35	Synthetic Lethal Interaction of SHOC2 Depletion with MEK Inhibition in RAS-Driven Cancers. Cell Reports, 2019, 29, 118-134.e8.	2.9	63
36	Small-molecule targeting of brachyury transcription factor addiction in chordoma. Nature Medicine, 2019, 25, 292-300.	15.2	120

#	Article	IF	CITATIONS
37	A CRISPR Way to Identify Cancer Targets. New England Journal of Medicine, 2019, 380, 2475-2477.	13.9	5
38	Neuronal differentiation and cell-cycle programs mediate response to BET-bromodomain inhibition in MYC-driven medulloblastoma. Nature Communications, 2019, 10, 2400.	5.8	37
39	Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature, 2019, 569, 503-508.	13.7	2,149
40	The landscape of cancer cell line metabolism. Nature Medicine, 2019, 25, 850-860.	15.2	350
41	TAS-120 Overcomes Resistance to ATP-Competitive FGFR Inhibitors in Patients with FGFR2 Fusion–Positive Intrahepatic Cholangiocarcinoma. Cancer Discovery, 2019, 9, 1064-1079.	7.7	254
42	BRD9 defines a SWI/SNF sub-complex and constitutes a specific vulnerability in malignant rhabdoid tumors. Nature Communications, 2019, 10, 1881.	5.8	117
43	Genome-Wide Interrogation of Human Cancers Identifies EGLN1 Dependency in Clear Cell Ovarian Cancers. Cancer Research, 2019, 79, 2564-2579.	0.4	32
44	Deubiquitinases Maintain Protein Homeostasis and Survival of Cancer Cells upon Glutathione Depletion. Cell Metabolism, 2019, 29, 1166-1181.e6.	7.2	121
45	MDM2 and MDM4 Are Therapeutic Vulnerabilities in Malignant Rhabdoid Tumors. Cancer Research, 2019, 79, 2404-2414.	0.4	43
46	MCL1 and DEDD Promote Urothelial Carcinoma Progression. Molecular Cancer Research, 2019, 17, 1294-1304.	1.5	4
47	Agreement between two large pan-cancer CRISPR-Cas9 gene dependency data sets. Nature Communications, 2019, 10, 5817.	5.8	160
48	CREB5 Promotes Resistance to Androgen-Receptor Antagonists and Androgen Deprivation in Prostate Cancer. Cell Reports, 2019, 29, 2355-2370.e6.	2.9	45
49	Renal medullary carcinomas depend upon SMARCB1 loss and are sensitive to proteasome inhibition. ELife, 2019, 8, .	2.8	32
50	Somatic Superenhancer Duplications and Hotspot Mutations Lead to Oncogenic Activation of the KLF5 Transcription Factor. Cancer Discovery, 2018, 8, 108-125.	7.7	99
51	Synthetic Lethal Vulnerabilities in <i>KRAS</i> -Mutant Cancers. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a031518.	2.9	63
52	NetSig: network-based discovery from cancer genomes. Nature Methods, 2018, 15, 61-66.	9.0	95
53	Improved estimation of cancer dependencies from large-scale RNAi screens using model-based normalization and data integration. Nature Communications, 2018, 9, 4610.	5.8	290
54	Identification of ADAR1 adenosine deaminase dependency in a subset of cancer cells. Nature Communications, 2018, 9, 5450.	5.8	157

#	Article	IF	CITATIONS
55	Organoid Modeling of the Tumor Immune Microenvironment. Cell, 2018, 175, 1972-1988.e16.	13.5	870
56	Mutational processes shape the landscape of TP53 mutations in human cancer. Nature Genetics, 2018, 50, 1381-1387.	9.4	334
57	Interrogation of Mammalian Protein Complex Structure, Function, and Membership Using Genome-Scale Fitness Screens. Cell Systems, 2018, 6, 555-568.e7.	2.9	126
58	Targetable vulnerabilities in T- and NK-cell lymphomas identified through preclinical models. Nature Communications, 2018, 9, 2024.	5.8	80
59	Genome-scale analysis identifies paralog lethality as a vulnerability of chromosome 1p loss in cancer. Nature Genetics, 2018, 50, 937-943.	9.4	55
60	Binding of TMPRSS2-ERG to BAF Chromatin Remodeling Complexes Mediates Prostate Oncogenesis. Molecular Cell, 2018, 71, 554-566.e7.	4.5	77
61	Selective gene dependencies in MYCN-amplified neuroblastoma include the core transcriptional regulatory circuitry. Nature Genetics, 2018, 50, 1240-1246.	9.4	199
62	iRGD-guided Tumor-penetrating Nanocomplexes for Therapeutic siRNA Delivery to Pancreatic Cancer. Molecular Cancer Therapeutics, 2018, 17, 2377-2388.	1.9	52
63	A Somatically Acquired Enhancer of the Androgen Receptor Is a Noncoding Driver in Advanced Prostate Cancer. Cell, 2018, 174, 422-432.e13.	13.5	234
64	Real-time Genomic Characterization of Advanced Pancreatic Cancer to Enable Precision Medicine. Cancer Discovery, 2018, 8, 1096-1111.	7.7	256
65	Tumor fraction in cell-free DNA as a biomarker in prostate cancer. JCI Insight, 2018, 3, .	2.3	94
66	An alternative splicing switch in FLNB promotes the mesenchymal cell state in human breast cancer. ELife, 2018, 7, .	2.8	91
67	A brain-penetrant RAF dimer antagonist for the noncanonical BRAF oncoprotein of pediatric low-grade astrocytomas. Neuro-Oncology, 2017, 19, now261.	0.6	55
68	<i>PIK3CA</i> mutant tumors depend on oxoglutarate dehydrogenase. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3434-E3443.	3.3	38
69	PARP3 is a promoter of chromosomal rearrangements and limits G4 DNA. Nature Communications, 2017, 8, 15110.	5.8	32
70	Castration Resistance in Prostate Cancer Is Mediated by the Kinase NEK6. Cancer Research, 2017, 77, 753-765.	0.4	31
71	Complementary information derived from CRISPR Cas9 mediated gene deletion and suppression. Nature Communications, 2017, 8, 15403.	5.8	93
72	Going beyond genetics to discover cancer targets. Genome Biology, 2017, 18, 95.	3.8	2

#	Article	IF	CITATIONS
73	The EMT regulator ZEB2 is a novel dependency of human and murine acute myeloid leukemia. Blood, 2017, 129, 497-508.	0.6	65
74	Computational correction of copy number effect improves specificity of CRISPR–Cas9 essentiality screens in cancer cells. Nature Genetics, 2017, 49, 1779-1784.	9.4	1,436
75	A Community Challenge for Inferring Genetic Predictors of Gene Essentialities through Analysis of a Functional Screen of Cancer Cell Lines. Cell Systems, 2017, 5, 485-497.e3.	2.9	19
76	Decomposing Oncogenic Transcriptional Signatures to Generate Maps of Divergent Cellular States. Cell Systems, 2017, 5, 105-118.e9.	2.9	40
77	Defining a Cancer Dependency Map. Cell, 2017, 170, 564-576.e16.	13.5	1,794
78	Analysis of <i>Fusobacterium</i> persistence and antibiotic response in colorectal cancer. Science, 2017, 358, 1443-1448.	6.0	983
79	Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature, 2017, 547, 453-457.	13.7	1,194
80	PRMT1-Mediated Translation Regulation Is a Crucial Vulnerability of Cancer. Cancer Research, 2017, 77, 4613-4625.	0.4	30
81	Tyrosine receptor kinase B is a drug target in astrocytomas. Neuro-Oncology, 2017, 19, 22-30.	0.6	32
82	KEAP1 loss modulates sensitivity to kinase targeted therapy in lung cancer. ELife, 2017, 6, .	2.8	92
83	Synergistic interactions with PI3K inhibition that induce apoptosis. ELife, 2017, 6, .	2.8	25
84	Genomic Resistance Patterns to Second-Generation Androgen Blockade in Paired Tumor Biopsies of Metastatic Castration-Resistant Prostate Cancer. JCO Precision Oncology, 2017, 1, 1-11.	1.5	13
85	CRISPR-Cas9 screen reveals a MYCN-amplified neuroblastoma dependency on EZH2. Journal of Clinical Investigation, 2017, 128, 446-462.	3.9	117
86	Copy-number and gene dependency analysis reveals partial copy loss of wild-type SF3B1 as a novel cancer vulnerability. ELife, 2017, 6, .	2.8	66
87	Institutional implementation of clinical tumor profiling on an unselected cancer population. JCI Insight, 2016, 1, e87062.	2.3	340
88	Integrated genetic and pharmacologic interrogation of rare cancers. Nature Communications, 2016, 7, 11987.	5.8	45
89	Characterizing genomic alterations in cancer by complementary functional associations. Nature Biotechnology, 2016, 34, 539-546.	9.4	78
90	Systematic Functional Interrogation of Rare Cancer Variants Identifies Oncogenic Alleles. Cancer Discovery, 2016, 6, 714-726.	7.7	139

#	Article	IF	CITATIONS
91	Genetic and Proteomic Interrogation of Lower Confidence Candidate Genes Reveals Signaling Networks in β-Catenin-Active Cancers. Cell Systems, 2016, 3, 302-316.e4.	2.9	55
92	Functional Genomic Characterization of Cancer Genomes. Cold Spring Harbor Symposia on Quantitative Biology, 2016, 81, 237-246.	2.0	17
93	Genomic Copy Number Dictates a Gene-Independent Cell Response to CRISPR/Cas9 Targeting. Cancer Discovery, 2016, 6, 914-929.	7.7	485
94	<i>MTAP</i> deletion confers enhanced dependency on the PRMT5 arginine methyltransferase in cancer cells. Science, 2016, 351, 1214-1218.	6.0	396
95	Identification of an "Exceptional Responder―Cell Line to MEK1 Inhibition: Clinical Implications for MEK-Targeted Therapy. Molecular Cancer Research, 2016, 14, 207-215.	1.5	23
96	Functional genomic screening reveals asparagine dependence as a metabolic vulnerability in sarcoma. ELife, 2015, 4, .	2.8	56
97	Papillomavirus E7 Oncoproteins Share Functions with Polyomavirus Small T Antigens. Journal of Virology, 2015, 89, 2857-2865.	1.5	17
98	Oncogenic Signaling Adaptor Proteins. Journal of Genetics and Genomics, 2015, 42, 521-529.	1.7	30
99	An in-tumor genetic screen reveals that the BET bromodomain protein, BRD4, is a potential therapeutic target in ovarian carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 232-237.	3.3	136
100	BreaKmer: detection of structural variation in targeted massively parallel sequencing data using kmers. Nucleic Acids Research, 2015, 43, e19-e19.	6.5	161
101	A Functional Landscape of Resistance to ALK Inhibition in Lung Cancer. Cancer Cell, 2015, 27, 397-408.	7.7	150
102	DOT1L inhibits SIRT1-mediated epigenetic silencing to maintain leukemic gene expression in MLL-rearranged leukemia. Nature Medicine, 2015, 21, 335-343.	15.2	200
103	Genomic Characterization of Brain Metastases Reveals Branched Evolution and Potential Therapeutic Targets. Cancer Discovery, 2015, 5, 1164-1177.	7.7	821
104	The androgen receptor cistrome is extensively reprogrammed in human prostate tumorigenesis. Nature Genetics, 2015, 47, 1346-1351.	9.4	363
105	Rapid Intraoperative Molecular Characterization of Clioma. JAMA Oncology, 2015, 1, 662.	3.4	68
106	SWI/SNF-mutant cancers depend on catalytic and non-catalytic activity of EZH2. Nature Medicine, 2015, 21, 1491-1496.	15.2	334
107	The Tyrosine Kinase Adaptor Protein FRS2 Is Oncogenic and Amplified in High-Grade Serous Ovarian Cancer. Molecular Cancer Research, 2015, 13, 502-509.	1.5	26
108	Analysis and Comparison of Somatic Mutations in Paired Primary and Recurrent Epithelial Ovarian Cancer Samples. PLoS ONE, 2014, 9, e99451.	1.1	15

#	Article	IF	CITATIONS
109	Integrative Analysis of 1q23.3 Copy-Number Gain in Metastatic Urothelial Carcinoma. Clinical Cancer Research, 2014, 20, 1873-1883.	3.2	63
110	In vivo multiplexed interrogation of amplified genes identifies GAB2 as an ovarian cancer oncogene. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1102-1107.	3.3	42
111	ARID1B is a specific vulnerability in ARID1A-mutant cancers. Nature Medicine, 2014, 20, 251-254.	15.2	336
112	Residual Complexes Containing SMARCA2 (BRM) Underlie the Oncogenic Drive of <i>SMARCA4</i> (<i>BRG1</i>) Mutation. Molecular and Cellular Biology, 2014, 34, 1136-1144.	1.1	176
113	Whole-exome sequencing of circulating tumor cells provides a window into metastatic prostate cancer. Nature Biotechnology, 2014, 32, 479-484.	9.4	495
114	Triplication of a 21q22 region contributes to B cell transformation through HMGN1 overexpression and loss of histone H3 Lys27 trimethylation. Nature Genetics, 2014, 46, 618-623.	9.4	117
115	Genomic insights into WNT/β-catenin signaling. Trends in Pharmacological Sciences, 2014, 35, 103-109.	4.0	99
116	Exome sequencing identifies BRAF mutations in papillary craniopharyngiomas. Nature Genetics, 2014, 46, 161-165.	9.4	408
117	RNF43 is frequently mutated in colorectal and endometrial cancers. Nature Genetics, 2014, 46, 1264-1266.	9.4	388
118	Polyomavirus Small t Antigen Interacts with Yes-Associated Protein To Regulate Cell Survival and Differentiation. Journal of Virology, 2014, 88, 12055-12064.	1.5	24
119	Analysis of tumour- and stroma-supplied proteolytic networks reveals a brain-metastasis-promoting role forÂcathepsin S. Nature Cell Biology, 2014, 16, 876-888.	4.6	300
120	Requirement for CDK6 in MLL-rearranged acute myeloid leukemia. Blood, 2014, 124, 13-23.	0.6	139
121	A Melanoma Cell State Distinction Influences Sensitivity to MAPK Pathway Inhibitors. Cancer Discovery, 2014, 4, 816-827.	7.7	448
122	Prospective Enterprise-Level Molecular Genotyping of a Cohort of Cancer Patients. Journal of Molecular Diagnostics, 2014, 16, 660-672.	1.2	70
123	ZFHX4 Interacts with the NuRD Core Member CHD4 and Regulates the Glioblastoma Tumor-Initiating Cell State. Cell Reports, 2014, 6, 313-324.	2.9	106
124	PP2A-Mediated Regulation of Ras Signaling in G2 Is Essential for Stable Quiescence and Normal G1 Length. Molecular Cell, 2014, 54, 932-945.	4.5	52
125	KRAS and YAP1 Converge to Regulate EMT and Tumor Survival. Cell, 2014, 158, 171-184.	13.5	608
126	Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies. Scientific Data, 2014, 1, 140035.	2.4	328

#	Article	IF	CITATIONS
127	Sensitizing shRNA Screen for Molecular Targets in CDK4/CDK6-Based Combination Therapy in Multiple Myeloma. Blood, 2014, 124, 3440-3440.	0.6	1
128	Synthetic lethality between <i>CCNE1</i> amplification and loss of <i>BRCA1</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19489-19494.	3.3	201
129	Systematic Interrogation of 3q26 Identifies <i>TLOC1</i> and <i>SKIL</i> as Cancer Drivers. Cancer Discovery, 2013, 3, 1044-1057.	7.7	71
130	ATARiS: Computational quantification of gene suppression phenotypes from multisample RNAi screens. Genome Research, 2013, 23, 665-678.	2.4	110
131	Genome-Wide RNAi Screen Identifies The Mechanistic Role For DOT1L In MLL-Rearranged Leukemia. Blood, 2013, 122, 598-598.	0.6	4
132	Nek4 Regulates Entry into Replicative Senescence and the Response to DNA Damage in Human Fibroblasts. Molecular and Cellular Biology, 2012, 32, 3963-3977.	1.1	42
133	β-Catenin-Driven Cancers Require a YAP1 Transcriptional Complex for Survival and Tumorigenesis. Cell, 2012, 151, 1457-1473.	13.5	647
134	Cancer Vulnerabilities Unveiled by Genomic Loss. Cell, 2012, 150, 842-854.	13.5	209
135	Targeted Tumor-Penetrating siRNA Nanocomplexes for Credentialing the Ovarian Cancer Oncogene <i>ID4</i> . Science Translational Medicine, 2012, 4, 147ra112.	5.8	157
136	Functional genomics to decipher cancer dependencies and mechanisms. FASEB Journal, 2012, 26, 464.1.	0.2	0
137	Synergistic Loss of IRF4 and Induction of IRF7 Sensitizes Primary Myeloma Cells to IMiD Killing by IFNβ in Prolonged Early G1 Arrest Induced by CDK4/CDK6 Inhibition. Blood, 2012, 120, 572-572.	0.6	2
138	A public genome-scale lentiviral expression library of human ORFs. Nature Methods, 2011, 8, 659-661.	9.0	477
139	Amplification of <i>CRKL</i> Induces Transformation and Epidermal Growth Factor Receptor Inhibitor Resistance in Human Non–Small Cell Lung Cancers. Cancer Discovery, 2011, 1, 608-625.	7.7	122
140	Genomic sequencing of colorectal adenocarcinomas identifies a recurrent VTI1A-TCF7L2 fusion. Nature Genetics, 2011, 43, 964-968.	9.4	270
141	BET Bromodomain Inhibition asÂa Therapeutic Strategy to Target c-Myc. Cell, 2011, 146, 904-917.	13.5	2,432
142	Towards systematic functional characterization of cancer genomes. Nature Reviews Genetics, 2011, 12, 487-498.	7.7	77
143	Dissecting Therapeutic Resistance to RAF Inhibition in Melanoma by Tumor Genomic Profiling. Journal of Clinical Oncology, 2011, 29, 3085-3096.	0.8	890
144	Transformation-Dependent Silencing of Tumor-Selective Apoptosis-Inducing TRAIL by DNA Hypermethylation Is Antagonized by Decitabine. Molecular Cancer Therapeutics, 2011, 10, 1611-1623.	1.9	14

#	Article	IF	CITATIONS
145	Systematic investigation of genetic vulnerabilities across cancer cell lines reveals lineage-specific dependencies in ovarian cancer. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12372-12377.	3.3	383
146	Inhibition of c-Myc Expression and Function in Hematologic Malignancies. Blood, 2011, 118, 1409-1409.	0.6	0
147	PLAGL2 Regulates Wnt Signaling to Impede Differentiation in Neural Stem Cells and Gliomas. Cancer Cell, 2010, 17, 497-509.	7.7	224
148	CDK8 expression in 470 colorectal cancers in relation to $\hat{l}^2 \hat{e} \hat{e}$ atenin activation, other molecular alterations and patient survival. International Journal of Cancer, 2010, 126, 2863-2873.	2.3	88
149	COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature, 2010, 468, 968-972.	13.7	1,325
150	CK1ε Is Required for Breast Cancers Dependent on β-Catenin Activity. PLoS ONE, 2010, 5, e8979.	1.1	64
151	Identification of PP2A Complexes and Pathways Involved in Cell Transformation. Cancer Research, 2010, 70, 10474-10484.	0.4	153
152	Intersecting Chemical Genomic and Genetic Screens Identifies Glycogen Synthase Kinase-3α (GSK-3α) as a Modulator of Differentiation In Acute Myeloid Leukemia. Blood, 2010, 116, 1000-1000.	0.6	0
153	Regulating TERT: Location, location, location. Cell Cycle, 2009, 8, 3257-3260.	1.3	Ο
154	Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature, 2009, 462, 108-112.	13.7	2,707
155	Integrative genomic approaches to understanding cancer. Biochimica Et Biophysica Acta - General Subjects, 2009, 1790, 478-484.	1.1	7
156	HOXA9 Is a Novel Therapeutic Target in Multiple Myeloma Blood, 2009, 114, 832-832.	0.6	2
157	Molecular Basis of Human Malignancy. , 2009, , 41-55.		1
158	NOVEL Pathways Modulate TUMOR CELL Susceptibility to NK CELLS Blood, 2009, 114, 277-277.	0.6	0
159	SV40 small T antigen and PP2A phosphatase in cell transformation. Cancer and Metastasis Reviews, 2008, 27, 137-146.	2.7	82
160	CDK8 is a colorectal cancer oncogene that regulates \hat{I}^2 -catenin activity. Nature, 2008, 455, 547-551.	13.7	594
161	Highly parallel identification of essential genes in cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20380-20385.	3.3	499
162	Genetic Screening for Myeloma Cell Susceptibility to NK Cell Mediated Lysis Using Large Lentiviral shRNA Libraries. Blood, 2008, 112, 2900-2900.	0.6	1

#	Article	IF	CITATIONS
163	Structural Basis of PP2A Inhibition by Small t Antigen. PLoS Biology, 2007, 5, e202.	2.6	102
164	The Role of PP2A A Subunits in Tumor Suppression. Cell Adhesion and Migration, 2007, 1, 140-141.	1.1	40
165	The Tumor Suppressor PP2A AÎ ² Regulates the RalA GTPase. Cell, 2007, 129, 969-982.	13.5	179
166	Integrative Genomic Approaches Identify IKBKE as a Breast Cancer Oncogene. Cell, 2007, 129, 1065-1079.	13.5	538
167	Prostate cancer: Re-focusing on androgen receptor signaling. International Journal of Biochemistry and Cell Biology, 2007, 39, 1562-1568.	1.2	37
168	Cancer genomics: integrating form and function. Carcinogenesis, 2007, 28, 1387-1392.	1.3	16
169	A Lentiviral RNAi Library for Human and Mouse Genes Applied to an Arrayed Viral High-Content Screen. Cell, 2006, 124, 1283-1298.	13.5	1,603
170	Roots and stems: stem cells in cancer. Nature Medicine, 2006, 12, 296-300.	15.2	338
171	Genome-scale loss-of-function screening with a lentiviral RNAi library. Nature Methods, 2006, 3, 715-719.	9.0	337
172	Gene expression signature-based chemical genomic prediction identifies a novel class of HSP90 pathway modulators. Cancer Cell, 2006, 10, 321-330.	7.7	557
173	Cancer genetics: Finding the right mix. European Journal of Human Genetics, 2005, 13, 1099-1100.	1.4	2
174	Telomerase: regulation, function and transformation. Critical Reviews in Oncology/Hematology, 2005, 54, 85-93.	2.0	87
175	Transformation of Human and Murine Fibroblasts without Viral Oncoproteins. Molecular and Cellular Biology, 2005, 25, 6464-6474.	1.1	158
176	Creating oral squamous cancer cells: A cellular model of oral-esophageal carcinogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 15599-15604.	3.3	48
177	Cancer-Associated PP2A Aα Subunits Induce Functional Haploinsufficiency and Tumorigenicity. Cancer Research, 2005, 65, 8183-8192.	0.4	151
178	Understanding transformation: progress and gaps. Current Opinion in Genetics and Development, 2005, 15, 13-17.	1.5	27
179	Signaling and Transcriptional Changes Critical for Transformation of Human Cells by Simian Virus 40 Small Tumor Antigen or Protein Phosphatase 2A B56γ Knockdown. Cancer Research, 2004, 64, 6978-6988.	0.4	53
180	Targeting Cancer with Telomerase. Clinical Cancer Research, 2004, 10, 1203-1205.	3.2	3

#	Article	IF	CITATIONS
181	Androgen-Induced Differentiation and Tumorigenicity of Human Prostate Epithelial Cells. Cancer Research, 2004, 64, 8867-8875.	0.4	170
182	Vaccination of Cancer Patients Against Telomerase Induces Functional Antitumor CD8+ T Lymphocytes. Clinical Cancer Research, 2004, 10, 828-839.	3.2	233
183	Cellular Targets of the SV40 Small-t Antigen in Human Cell Transformation. Cell Cycle, 2004, 3, 604-608.	1.3	30
184	A Genetically Defined Model for Human Ovarian Cancer. Cancer Research, 2004, 64, 1655-1663.	0.4	259
185	A signalling pathway controlling c-Myc degradation that impacts oncogenic transformation of human cells. Nature Cell Biology, 2004, 6, 308-318.	4.6	687
186	Identification of specific PP2A complexes involved in human cell transformation. Cancer Cell, 2004, 5, 127-136.	7.7	304
187	Immortalized cells as experimental models to study cancer. Cytotechnology, 2004, 45, 47-59.	0.7	18
188	The Origin of Cancer. , 2004, 122, 1-22.		3
189	Evolving views of telomerase and cancer. Trends in Cell Biology, 2003, 13, 289-294.	3.6	120
190	Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell, 2003, 3, 285-296.	7.7	973
191	Human mammary epithelial cell transformation through the activation of phosphatidylinositol 3-kinase. Cancer Cell, 2003, 3, 483-495.	7.7	262
192	Erosion of the telomeric single-strand overhang at replicative senescence. Nature Genetics, 2003, 33, 492-496.	9.4	311
193	Role of Telomeres and Telomerase in the Pathogenesis of Human Cancer. Journal of Clinical Oncology, 2003, 21, 2034-2043.	0.8	123
194	Telomerase Maintains Telomere Structure in Normal Human Cells. Cell, 2003, 114, 241-253.	13.5	689
195	Telomerase and tumorigenesis. Cancer Letters, 2003, 194, 163-172.	3.2	60
196	Abolition of Cyclin-Dependent Kinase Inhibitor p16 Ink4a and p21 Cip1/Waf1 Functions Permits Ras-Induced Anchorage-Independent Growth in Telomerase-Immortalized Human Fibroblasts. Molecular and Cellular Biology, 2003, 23, 2859-2870.	1.1	70
197	Lentivirus-delivered stable gene silencing by RNAi in primary cells. Rna, 2003, 9, 493-501.	1.6	1,270
198	Enumeration of the Simian Virus 40 Early Region Elements Necessary for Human Cell Transformation. Molecular and Cellular Biology, 2002, 22, 2111-2123.	1.1	575

#	Article	IF	CITATIONS
199	Senescence, Telomere Shortening and Telomere Maintenance. Cancer Biology and Therapy, 2002, 1, 398-400.	1.5	8
200	Empty Pockets Yield More Telomere Change. Cell Cycle, 2002, 1, 406-407.	1.3	0
201	Prospects for Anti-Neoplastic Therapies Based on Telomere Biology. Current Cancer Drug Targets, 2002, 2, 1-17.	0.8	8
202	Rules for Making Human Tumor Cells. New England Journal of Medicine, 2002, 347, 1593-1603.	13.9	876
203	Telomerase contributes to tumorigenesis by a telomere length-independent mechanism. Proceedings of the United States of America, 2002, 99, 12606-12611.	3.3	409
204	Immortalization and transformation of primary human airway epithelial cells by gene transfer. Oncogene, 2002, 21, 4577-4586.	2.6	231
205	Modelling the molecular circuitry of cancer. Nature Reviews Cancer, 2002, 2, 331-341.	12.8	883
206	Immortalization and transformation of human cells. Molecules and Cells, 2002, 13, 351-61.	1.0	55
207	Telomerase activation, cellular immortalization and cancer. Annals of Medicine, 2001, 33, 123-129.	1.5	121
208	Human Keratinocytes That Express hTERT and Also Bypass a p16 INK4a -Enforced Mechanism That Limits Life Span Become Immortal yet Retain Normal Growth and Differentiation Characteristics. Molecular and Cellular Biology, 2000, 20, 1436-1447.	1.1	943
209	Inhibition of telomerase limits the growth of human cancer cells. Nature Medicine, 1999, 5, 1164-1170.	15.2	983
210	Creation of human tumour cells with defined genetic elements. Nature, 1999, 400, 464-468.	13.7	2,148
211	The Telomerase Catalytic Subunit Is a Widely Expressed Tumor-Associated Antigen Recognized by Cytotoxic T Lymphocytes. Immunity, 1999, 10, 673-679.	6.6	528
212	CD43, a molecule defective in Wiskott-Aldrich syndrome, binds ICAM-1. Nature, 1991, 354, 233-235.	13.7	260