Petr V Shvets

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8541157/publications.pdf

Version: 2024-02-01

25 488 8 22
papers citations h-index g-index

25 25 25 605 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	A review of Raman spectroscopy of vanadium oxides. Journal of Raman Spectroscopy, 2019, 50, 1226-1244.	2.5	280
2	The c-axis thermal conductivity of graphite film of nanometer thickness measured by time resolved X-ray diffraction. Applied Physics Letters, 2012, 101, 233108.	3.3	66
3	Growth of a Carbon Nanotube Forest on Silicon using Remote Plasma CVD. Chemical Vapor Deposition, 2013, 19, 332-337.	1.3	17
4	Correlation between Raman spectra and oxygen content in amorphous vanadium oxides. Physica B: Condensed Matter, 2021, 613, 412995.	2.7	13
5	Polycrystalline magnetite (Fe3O4) thin films from FeOx/Fe bilayers grown by pulsed laser depositions. Thin Solid Films, 2018, 652, 28-33.	1.8	9
6	Polarized Raman scattering in micrometer-sized crystals of triclinic vanadium dioxide. Journal of Applied Physics, 2021, 129, .	2.5	9
7	Spatially Resolved <l>ln</l> <l>Situ</l> Diagnostics for Plasma-Enhanced Chemical Vapor Deposition Carbon Film Growth. Journal of Nanoelectronics and Optoelectronics, 2012, 7, 90-94.	0.5	9
8	Noncatalytic synthesis of carbon nanotubes by chemical vapor deposition. Crystallography Reports, 2011, 56, 310-314.	0.6	8
9	Electrochemical characterization of mesoporous nanographite films. Carbon, 2016, 105, 96-102.	10.3	8
10	Suppression of the metal-insulator transition in magnetron sputtered Ti2O3 films. Thin Solid Films, 2020, 694, 137642.	1.8	8
11	Optical Chacterization of Plasma Enhanced Chemical Vapor Deposition of Nanocarbon Film Materials. Journal of Nanoelectronics and Optoelectronics, 2009, 4, 243-246.	0.5	8
12	Cathodic arc sputtering of functional titanium oxide thin films, demonstrating resistive switching. Physica B: Condensed Matter, 2017, 513, 15-20.	2.7	7
13	Magnetic-field-assisted synthesis of anisotropic iron oxide particles: Effect of pH. Beilstein Journal of Nanotechnology, 2020, 11, 1230-1241.	2.8	7
14	Specific Features of Reactive Pulsed Laser Deposition of Solid Lubricating Nanocomposite Mo–S–C–H Thin-Film Coatings. Nanomaterials, 2020, 10, 2456.	4.1	6
15	Raman Spectroscopy of V4O7 Films. Coatings, 2022, 12, 291.	2.6	6
16	Pulsed Laser Phosphorus Doping and Nanocomposite Catalysts Deposition in Forming a-MoSx/NP-Mo//n+p-Si Photocathodes for Efficient Solar Hydrogen Production. Nanomaterials, 2022, 12, 2080.	4.1	6
17	Formation of needlelike crystallites during growth of diamond films by chemical vapor deposition. Crystallography Reports, 2010, 55, 710-715.	0.6	5
18	Comparison of hydrogen detection by WO /SiC and Pt/WO /SiC structures using amperometric and potentiometric modes of measurement. Thin Solid Films, 2019, 669, 461-470.	1.8	4

#	Article	IF	CITATIONS
19	Influence of Sulfidation Conditions of WO3 Nanocrystalline Film on Photoelectrocatalytic Activity of WS2/WO3 Hybrid Structure in Production of Hydrogen. Inorganic Materials: Applied Research, 2021, 12, 1139-1147.	0.5	4
20	Copper-Stabilized Si/Au Nanowhiskers for Advanced Nanoelectronic Applications. ACS Omega, 2018, 3, 1684-1688.	3.5	2
21	Graphene Formation on Surfaces of Single Crystal Metals. Journal of Nanoelectronics and Optoelectronics, 2013, 8, 46-51.	0.5	2
22	Physical and chemical processes in gas-discharge plasma during the deposition of nanocarbon films. Protection of Metals and Physical Chemistry of Surfaces, 2009, 45, 652-655.	1.1	1
23	Thin graphite films formation by carbon precipitation in metals: diffusion approach. Journal of Nanophotonics, 2015, 10, 012506.	1.0	1
24	Bandgap engineering of low-temperature CdS nanocrystalline prepared on Si($1\hat{a}\in 1\hat{a}\in 1$) without post-thermal annealing. Materials Today Communications, 2020, 25, 101297.	1.9	1
25	Micro-Raman mapping of VO2 (T) microcrystals orientation. Vibrational Spectroscopy, 2022, 118, 103328.	2.2	1