
Egor Y Plotnikov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8540054/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq1 1 0.784314 rgBT /0	Dverlock 1	0 Tf 50 742 1 1,490 742 1
2	Mitochondrial membrane potential. Analytical Biochemistry, 2018, 552, 50-59.	2.4	1,161
3	Cellâ€ŧo"ell crossâ€ŧalk between mesenchymal stem cells and cardiomyocytes in co"ulture. Journal of Cellular and Molecular Medicine, 2008, 12, 1622-1631.	3.6	196
4	The role of mitochondria in oxidative and nitrosative stress during ischemia/reperfusion in the rat kidney. Kidney International, 2007, 72, 1493-1502.	5.2	172
5	Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 2. Treatment of some ROS- and Age-related diseases (heart arrhythmia, heart infarctions,) Tj ETQq1 1 (0.7845314	rgBīī5¦Overloo
6	Mitochondrial-Targeted Plastoquinone Derivatives. Effect on Senescence and Acute Age-Related Pathologies. Current Drug Targets, 2011, 12, 800-826.	2.1	147
7	Cytoplasm and organelle transfer between mesenchymal multipotent stromal cells and renal tubular cells in co-culture. Experimental Cell Research, 2010, 316, 2447-2455.	2.6	136
8	Miro1 Enhances Mitochondria Transfer from Multipotent Mesenchymal Stem Cells (MMSC) to Neural Cells and Improves the Efficacy of Cell Recovery. Molecules, 2018, 23, 687.	3.8	130
9	Myoglobin causes oxidative stress, increase of NO production and dysfunction of kidney's mitochondria. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2009, 1792, 796-803.	3.8	104
10	Mechanisms of nephroprotective effect of mitochondria-targeted antioxidants under rhabdomyolysis and ischemia/reperfusion. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 77-86.	3.8	104
11	Improving the Post-Stroke Therapeutic Potency of Mesenchymal Multipotent Stromal Cells by Cocultivation With Cortical Neurons: The Role of Crosstalk Between Cells. Stem Cells Translational Medicine, 2015, 4, 1011-1020.	3.3	92
12	Effect of MSCs and MSC-Derived Extracellular Vesicles on Human Blood Coagulation. Cells, 2019, 8, 258.	4.1	91
13	Human Induced Pluripotent Stem Cells Derived from Fetal Neural Stem Cells Successfully Undergo Directed Differentiation into Cartilage. Stem Cells and Development, 2011, 20, 1099-1112.	2.1	82
14	Protective effect of mitochondria-targeted antioxidants in an acute bacterial infection. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3100-8.	7.1	81
15	Lessons from the Discovery of Mitochondrial Fragmentation (Fission): A Review and Update. Cells, 2019, 8, 175.	4.1	65
16	Interrelations of mitochondrial fragmentation and cell death under ischemia/reoxygenation and UVâ€irradiation: Protective effects of SkQ1, lithium ions and insulin. FEBS Letters, 2008, 582, 3117-3124.	2.8	53
17	Mild uncoupling of respiration and phosphorylation as a mechanism providing nephro- and neuroprotective effects of penetrating cations of the SkQ family. Biochemistry (Moscow), 2012, 77, 1029-1037.	1.5	52
18	Reactive oxygen and nitrogen species: Friends or foes?. Biochemistry (Moscow), 2005, 70, 215-221.	1.5	51

#	Article	IF	CITATIONS
19	New-generation Skulachev ions exhibiting nephroprotective and neuroprotective properties. Biochemistry (Moscow), 2010, 75, 145-150.	1.5	51
20	Mitochondrial Damage and Mitochondria-Targeted Antioxidant Protection in LPS-Induced Acute Kidney Injury. Antioxidants, 2019, 8, 176.	5.1	51
21	The mitochondrion as Janus Bifrons. Biochemistry (Moscow), 2007, 72, 1115-1126.	1.5	47
22	Neuroprotective Effects of Mitochondria-Targeted Plastoquinone and Thymoquinone in a Rat Model of Brain Ischemia/Reperfusion Injury. Molecules, 2015, 20, 14487-14503.	3.8	46
23	The Mitochondria-Targeted Antioxidants and Remote Kidney Preconditioning Ameliorate Brain Damage through Kidney-to-Brain Cross-Talk. PLoS ONE, 2012, 7, e51553.	2.5	43
24	A mitochondria-targeted protonophoric uncoupler derived from fluorescein. Chemical Communications, 2014, 50, 15366-15369.	4.1	41
25	The Mitochondrion as a Key Regulator of Ischaemic Tolerance and Injury. Heart Lung and Circulation, 2014, 23, 897-904.	0.4	40
26	Microbiota and mitobiota. Putting an equal sign between mitochondria and bacteria. Biochemistry (Moscow), 2014, 79, 1017-1031.	1.5	39
27	Mitochondria as a Source and a Target for Uremic Toxins. International Journal of Molecular Sciences, 2019, 20, 3094.	4.1	39
28	Role of acidosis, NMDA receptors, and acid-sensitive ion channel 1a (ASIC1a) in neuronal death induced by ischemia. Biochemistry (Moscow), 2008, 73, 1171-1175.	1.5	35
29	The age-associated loss of ischemic preconditioning in the kidney is accompanied by mitochondrial dysfunction, increased protein acetylation and decreased autophagy. Scientific Reports, 2017, 7, 44430.	3.3	35
30	Neuroprotective Effects of Mitochondria-Targeted Plastoquinone in a Rat Model of Neonatal Hypoxic–lschemic Brain Injury. Molecules, 2018, 23, 1871.	3.8	35
31	Mechanisms of LPS-Induced Acute Kidney Injury in Neonatal and Adult Rats. Antioxidants, 2018, 7, 105.	5.1	35
32	Mitochondria-targeted antioxidant SkQR1 ameliorates gentamycin-induced renal failure and hearing loss. Biochemistry (Moscow), 2012, 77, 666-670.	1.5	34
33	A short-chain alkyl derivative of Rhodamine 19 acts as a mild uncoupler of mitochondria and a neuroprotector. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 1739-1747.	1.0	34
34	Kidney Cells Regeneration: Dedifferentiation of Tubular Epithelium, Resident Stem Cells and Possible Niches for Renal Progenitors. International Journal of Molecular Sciences, 2019, 20, 6326.	4.1	33
35	The role of myoglobin degradation in nephrotoxicity after rhabdomyolysis. Chemico-Biological Interactions, 2016, 256, 64-70.	4.0	32
36	Nephroprotective effect of GSK-3β inhibition by lithium ions and δ-opioid receptor agonist dalargin on gentamicin-induced nephrotoxicity. Toxicology Letters, 2013, 220, 303-308.	0.8	31

#	Article	IF	CITATIONS
37	Mitochondrial free radical production induced by glucose deprivation in cerebellar granule neurons. Biochemistry (Moscow), 2008, 73, 149-155.	1.5	29
38	Microbiome-Metabolome Signature of Acute Kidney Injury. Metabolites, 2020, 10, 142.	2.9	29
39	A long-linker conjugate of fluorescein and triphenylphosphonium as mitochondria-targeted uncoupler and fluorescent neuro- and nephroprotector. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 2463-2473.	2.4	28
40	Functional Significance of the Mitochondrial Membrane Potential. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2018, 12, 20-26.	0.6	28
41	The phenoptosis problem: What is causing the death of an organism? Lessons from acute kidney injury. Biochemistry (Moscow), 2012, 77, 742-753.	1.5	24
42	Lithium salts — Simple but magic. Biochemistry (Moscow), 2014, 79, 740-749.	1.5	24
43	Neuroprotective effect of glutamate-substituted analog of gramicidin A is mediated by the uncoupling of mitochondria. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 3434-3442.	2.4	24
44	Intercellular transfer of mitochondria. Biochemistry (Moscow), 2015, 80, 542-548.	1.5	24
45	Intercellular Signalling Cross-Talk: To Kill, To Heal and To Rejuvenate. Heart Lung and Circulation, 2017, 26, 648-659.	0.4	24
46	Lost or Forgotten: The nuclear cathepsin protein isoforms in cancer. Cancer Letters, 2019, 462, 43-50.	7.2	24
47	Magnetic resonance spectroscopy of the ischemic brain under lithium treatment. Link to mitochondrial disorders under stroke. Chemico-Biological Interactions, 2015, 237, 175-182.	4.0	23
48	Dysfunction of kidney endothelium after ischemia/reperfusion and its prevention by mitochondria-targeted antioxidant. Biochemistry (Moscow), 2016, 81, 1538-1548.	1.5	22
49	Aged kidney: can we protect it? Autophagy, mitochondria and mechanisms of ischemic preconditioning. Cell Cycle, 2018, 17, 1291-1309.	2.6	21
50	Effect of Silk Fibroin on Neuroregeneration After Traumatic Brain Injury. Neurochemical Research, 2019, 44, 2261-2272.	3.3	21
51	Effect of transitory glucose deprivation on mitochondrial structure and functions in cultured cerebellar granule neurons. Neuroscience Letters, 2009, 461, 140-144.	2.1	20
52	Perspectives of mitochondrial medicine. Biochemistry (Moscow), 2013, 78, 979-990.	1.5	20
53	Mechanisms of Age-Dependent Loss of Dietary Restriction Protective Effects in Acute Kidney Injury. Cells, 2018, 7, 178.	4.1	20
54	Pros and Cons of Use of Mitochondria-Targeted Antioxidants. Antioxidants, 2019, 8, 316.	5.1	20

#	Article	IF	CITATIONS
55	Age-Related Changes in Bone-Marrow Mesenchymal Stem Cells. Cells, 2021, 10, 1273.	4.1	19
56	Mechanisms Underlying the Protective Effect of the Peroxiredoxin-6 Are Mediated via the Protection of Astrocytes during Ischemia/Reoxygenation. International Journal of Molecular Sciences, 2021, 22, 8805.	4.1	19
57	Gut Microbiota as a Source of Uremic Toxins. International Journal of Molecular Sciences, 2022, 23, 483.	4.1	19
58	Do Extracellular Vesicles Derived from Mesenchymal Stem Cells Contain Functional Mitochondria?. International Journal of Molecular Sciences, 2022, 23, 7408.	4.1	19
59	The role of oxidative stress in acute renal injury of newborn rats exposed to hypoxia and endotoxin. FEBS Journal, 2017, 284, 3069-3078.	4.7	18
60	Targeting Inflammation and Oxidative Stress as a Therapy for Ischemic Kidney Injury. Biochemistry (Moscow), 2020, 85, 1591-1602.	1.5	18
61	The Mechanisms Underlying the Protective Action of Selenium Nanoparticles against Ischemia/Reoxygenation Are Mediated by the Activation of the Ca2+ Signaling System of Astrocytes and Reactive Astrogliosis. International Journal of Molecular Sciences, 2021, 22, 12825.	4.1	18
62	Size-Dependent Cytoprotective Effects of Selenium Nanoparticles during Oxygen-Glucose Deprivation in Brain Cortical Cells. International Journal of Molecular Sciences, 2022, 23, 7464.	4.1	18
63	Pregnancy protects the kidney from acute ischemic injury. Scientific Reports, 2018, 8, 14534.	3.3	17
64	Effects of Traumatic Brain Injury on the Gut Microbiota Composition and Serum Amino Acid Profile in Rats. Cells, 2022, 11, 1409.	4.1	17
65	N-Terminally Glutamate-Substituted Analogue of Gramicidin A as Protonophore and Selective Mitochondrial Uncoupler. PLoS ONE, 2012, 7, e41919.	2.5	16
66	Mitochondrial Aging: Is There a Mitochondrial Clock?. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2017, 72, glw184.	3.6	16
67	Neuroprotective Potential of Mild Uncoupling in Mitochondria. Pros and Cons. Brain Sciences, 2021, 11, 1050.	2.3	16
68	Intra-Arterial Administration of Multipotent Mesenchymal Stromal Cells Promotes Functional Recovery of the Brain After Traumatic Brain Injury. Bulletin of Experimental Biology and Medicine, 2015, 159, 528-533.	0.8	15
69	Is the Mitochondrial Membrane Potential (â^†Î [°]) Correctly Assessed? Intracellular and Intramitochondrial Modifications of the â^†Î [°] Probe, Rhodamine 123. International Journal of Molecular Sciences, 2022, 23, 482.	4.1	15
70	Inflammatory pre-conditioning of mesenchymal multipotent stromalÂcells improves their immunomodulatory potency in acute pyelonephritis in rats. Cytotherapy, 2013, 15, 679-689.	0.7	14
71	Mitodiversity. Biochemistry (Moscow), 2015, 80, 532-541.	1.5	14
72	Zwitterionic Protonophore Derived from 2-(2-Hydroxyaryl)alkenylphosphonium as an Uncoupler of Oxidative Phosphorylation. Bioconjugate Chemistry, 2019, 30, 2435-2443.	3.6	14

#	Article	IF	CITATIONS
73	Role of oxidative stress and mitochondria in onset of urinary bladder dysfunction under acute urine retention. Biochemistry (Moscow), 2013, 78, 542-548.	1.5	13
74	The Protective Mechanism of Deuterated Linoleic Acid Involves the Activation of the Ca2+ Signaling System of Astrocytes in Ischemia In Vitro. International Journal of Molecular Sciences, 2021, 22, 13216.	4.1	13
75	Functional activity of mitochondria in cultured neural precursor cells. Bulletin of Experimental Biology and Medicine, 2006, 141, 142-146.	0.8	12
76	Functional aftereffects of intraparenchymatous injection of human fetal stem and progenitor cells to rats with chronic and acute renal failure. Bulletin of Experimental Biology and Medicine, 2006, 141, 500-506.	0.8	12
77	Effect of anesthetics on efficiency of remote ischemic preconditioning. Biochemistry (Moscow), 2017, 82, 1006-1016.	1.5	12
78	Resemblance and differences in dietary restriction nephroprotective mechanisms in young and old rats. Aging, 2020, 12, 18693-18715.	3.1	12
79	Experimental intravenous cell therapy of acute and chronic renal failure. Bulletin of Experimental Biology and Medicine, 2007, 143, 160-165.	0.8	11
80	Inhibition of GSK-3Î ² Decreases the Ischemia-Induced Death of Renal Cells. Bulletin of Experimental Biology and Medicine, 2010, 149, 303-307.	0.8	11
81	Diseases and aging: Gender matters. Biochemistry (Moscow), 2015, 80, 1560-1570.	1.5	11
82	Protection of Neurovascular Unit Cells with Lithium Chloride and Sodium Valproate Prevents Brain Damage in Neonatal Ischemia/Hypoxia. Bulletin of Experimental Biology and Medicine, 2016, 160, 313-318.	0.8	10
83	Heterogeneity of Mitochondrial Potential as a Marker for Isolation of Pure Cardiomyoblast Population. Bulletin of Experimental Biology and Medicine, 2008, 146, 506-511.	0.8	9
84	Molecular and cellular interactions between mother and fetus. Pregnancy as a rejuvenating factor. Biochemistry (Moscow), 2016, 81, 1480-1487.	1.5	9
85	Rapamycin Is Not Protective against Ischemic and Cisplatin-Induced Kidney Injury. Biochemistry (Moscow), 2019, 84, 1502-1512.	1.5	9
86	Macrophage polarization in hypoxia and ischemia/reperfusion: Insights into the role of energetic metabolism. Experimental Biology and Medicine, 2022, 247, 958-971.	2.4	9
87	Effects of ischemic and hypoxic preconditioning on the state of mitochondria and function of ischemic kidneys. Bulletin of Experimental Biology and Medicine, 2007, 143, 105-109.	0.8	8
88	Effects of Recombinant Spidroin rS1/9 on Brain Neural Progenitors After Photothrombosis-Induced Ischemia. Frontiers in Cell and Developmental Biology, 2020, 8, 823.	3.7	8
89	Mitochondria in the Nuclei of Rat Myocardial Cells. Cells, 2020, 9, 712.	4.1	8
90	Effects of Panthenol and N-Acetylcysteine on Changes in the Redox State of Brain Mitochondria under Oxidative Stress In Vitro. Antioxidants, 2021, 10, 1699.	5.1	8

#	Article	IF	CITATIONS
91	Dietary Restriction for Kidney Protection: Decline in Nephroprotective Mechanisms During Aging. Frontiers in Physiology, 2021, 12, 699490.	2.8	7
92	Nonphosphorylating Oxidation in Mitochondria and Related Processes. Biochemistry (Moscow), 2020, 85, 1570-1577.	1.5	7
93	The Use of Technetium-99m for Intravital Tracing of Transplanted Multipotent Stromal Cells. Bulletin of Experimental Biology and Medicine, 2016, 162, 153-159.	0.8	6
94	Mitochondria-Associated Matrix Metalloproteinases 2 and 9 in Acute Renal Pathologies. Bulletin of Experimental Biology and Medicine, 2019, 166, 334-338.	0.8	6
95	Bacterial therapy and mitochondrial therapy. Biochemistry (Moscow), 2017, 82, 1549-1556.	1.5	5
96	Morphological Changes in the Kidneys of Rats with Postischemic Acute Renal Failure after Intrarenal Administration of Fetal Mesenchymal Stem Cells from Human Bone Marrow. Bulletin of Experimental Biology and Medicine, 2009, 147, 113-119.	0.8	4
97	Do mitochondria have an immune system?. Biochemistry (Moscow), 2016, 81, 1229-1236.	1.5	4
98	The Influence of Proinflammatory Factors on the Neuroprotective Efficiency of Multipotent Mesenchymal Stromal Cells in Traumatic Brain Injury. Bulletin of Experimental Biology and Medicine, 2017, 163, 528-534.	0.8	4
99	A Combination of Kidney Ischemia and Injection of Isolated Mitochondria Leads to Activation of Inflammation and Increase in Mortality Rate in Rats. Bulletin of Experimental Biology and Medicine, 2020, 169, 213-217.	0.8	4
100	Dietary restriction modulates mitochondrial DNA damage and oxylipin profile in aged rats. FEBS Journal, 2022, 289, 5697-5713.	4.7	4
101	Hormonal Regulation of Renal Fibrosis. Life, 2022, 12, 737.	2.4	4
102	Methods of Detection of Mesenchymal Stem Cells in the Kidneys during Therapy of Experimental Renal Pathologies. Bulletin of Experimental Biology and Medicine, 2012, 154, 145-151.	0.8	3
103	Intramitochondrial accumulation of cationic Atto520-biotin proceeds via voltage-dependent slow permeation through lipid membrane. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 1277-1284.	2.6	3
104	Mechanisms of inflammatory injury of renal tubular cells in a cellular model of pyelonephritis. Biochemistry (Moscow), 2016, 81, 1240-1250.	1.5	3
105	Comparative Study of the Severity of Renal Damage in Newborn and Adult Rats under Conditions of Ischemia/Reperfusion and Endotoxin Administration. Bulletin of Experimental Biology and Medicine, 2018, 165, 189-194.	0.8	3
106	Ischemic Preconditioning of the Kidney. Bulletin of Experimental Biology and Medicine, 2021, 171, 567-571.	0.8	3
107	Changes in number of neurons, astrocytes and microglia in brain after ischemic stroke assessed by immunohistochemistry and immunoblotting. Cell and Tissue Biology, 2016, 10, 445-452.	0.4	2
108	Mitochondria as a target for neuroprotection. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2016, 10, 28-36.	0.6	2

#	Article	IF	CITATIONS
109	Bioenergetics of the Fibrosis. Biochemistry (Moscow), 2021, 86, 1599-1606.	1.5	2
110	Mitochondrial regulation of production of reactive oxygen species and nitrogen in rat cells of kidney during ischemia/reperfusion. Doklady Biochemistry and Biophysics, 2005, 400, 80-83.	0.9	1
111	Quantification of mitochondrial morphology in situ. Cell and Tissue Biology, 2017, 11, 51-58.	0.4	1
112	Editorial: Mitochondria in Renal Health and Disease. Frontiers in Physiology, 2021, 12, 707175.	2.8	1
113	Prospects for using stem and progenitor cells in the therapy of consequences of neonatal hypoxic-ischemic encephalopathy. Akusherstvo I Ginekologiya (Russian Federation), 2016, 5_2016, 55-66.	0.3	1
114	Effect of Xenotransplantation of Cell Cultures Enriched with Stem and Progenitor Cells on Hormonal Profile of Rats with Abdominal Cryptorchism. Bulletin of Experimental Biology and Medicine, 2008, 146, 517-521.	0.8	0
115	S8.24 Cell-to-cell cross-talk between mesenchymal stem cells and cardiomyocytes. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, S53-S54.	1.0	0
116	Evaluation of neuroprotective abilities of the novel mitochondria-targeted antioxidants. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 82.	1.0	0
117	Kidney cell death in inflammation: The role of oxidative stress and mitochondria. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2014, 8, 103-110.	0.6	0
118	Mechanisms of improving the neuroprotective effects of multipotent stromal cells after Co-culturing with neurons. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2015, 9, 285-292.	0.6	0
119	FP184THE EFFECTS OF MITOCHONDRIA-TARGETED ANTIOXIDANT SKQR1 ON RENAL BLOOD FLOW DURING ISCHEMIA/REPERFUSION OF KIDNEY. Nephrology Dialysis Transplantation, 2015, 30, iii128-iii128.	0.7	0
120	Specific issues of mitochondrial fragmentation (Fission). Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2015, 9, 278-284.	0.6	0
121	FP237EFFECTS OF THE AGE ON ACUTE KIDNEY INJURY IN NEONATAL AND ADULT RATS. Nephrology Dialysis Transplantation, 2018, 33, i109-i109.	0.7	0
122	FP037INFLUENCE OF INFLAMMATION ON MMSC:ANTI-INFLAMMATORY PRIMING OR SWITCHING TO INFLAMMATORY PHENOTYPE. Nephrology Dialysis Transplantation, 2018, 33, i59-i60.	0.7	0
123	P0017ESTIMATION OF KIDNEY MITOCHONDRIA TOLERANCE VIA FLUORESCENCE MICROSCOPY. Nephrology Dialysis Transplantation, 2020, 35, .	0.7	0
124	Editorial: Mitochondria in Renal Health and Disease, Volume II. Frontiers in Physiology, 2021, 12, 818421.	2.8	0
125	Loss of ischemic tolerance with age: can we protect an old kidney. Innovation in Aging, 2021, 5, 685-685.	0.1	Ο