Andrea Basso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/853957/publications.pdf

Version: 2024-02-01

117625 175258 3,572 121 34 52 h-index citations g-index papers 127 127 127 2921 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	An outbreak of crayfish rickettsiosis caused by <i>Coxiella cheraxi</i> in redclaw crayfish (<i>Cherax) Tj ETQq1 1 69, 204-212.</i>	0.784314 3.0	4 rgBT /Overlo 3
2	Molecular Relationships and Genetic Diversity Analysis of Venetian Radicchio (Leaf Chicory,) Tj ETQq0 0 0 rgBT /O	verlock 10)
3	Macrostructural Evolution of the Mitogenome of Butterflies (Lepidoptera, Papilionoidea). Insects, 2022, 13, 358.	2.2	3
4	Catalyst-free [2 + 2] photocycloadditions between benzils and olefins under visible light. Photochemical and Photobiological Sciences, 2022, 21, 695-703.	2.9	6
5	A Virtual Game-Based Tournament to Engage Students in Reviewing Organic Acids and Bases Concepts. Journal of Chemical Education, 2022, 99, 2190-2197.	2.3	2
6	The 100 facets of the Passerini reaction. Chemical Science, 2021, 12, 15445-15472.	7.4	41
7	Not Frozen in the Ice: Large and Dynamic Rearrangements in the Mitochondrial Genomes of the Antarctic Fish. Genome Biology and Evolution, 2021, 13 , .	2.5	19
8	A Thorough Study on the Photoisomerization of Ferulic Acid Derivatives. European Journal of Organic Chemistry, 2021, 2021, 1737-1749.	2.4	6
9	Into the Blue: Ketene Multicomponent Reactions under Visible Light. Journal of Organic Chemistry, 2021, 86, 5845-5851.	3.2	16
10	Ketene 3â€Component Staudinger Reaction (Kâ€3CSR) to βâ€Lactams: A New Entry in the Class of Photoinduced Multicomponent Reactions. European Journal of Organic Chemistry, 2021, 2021, 3270-3273.	d 2.4	6
11	HSG400 – Design, implementation, and evaluation of a hybrid board game for aiding chemistry and chemical engineering students in the review of stereochemistry during and after the COVID-19 pandemic. Education for Chemical Engineers, 2021, 36, 90-99.	4.8	8
12	Stereodivergent access to all four stereoisomers of chiral tetrahydrobenzo[$\langle i \rangle f \langle i \rangle$][1,4]oxazepines, through highly diastereoselective multicomponent Ugiâ \in "JoulliA \otimes reaction. RSC Advances, 2020, 10, 965-972.	3.6	8
13	Results of a Peer Review Activity in an Organic Chemistry Laboratory Course for Undergraduates. Journal of Chemical Education, 2020, 97, 4073-4077.	2.3	8
14	Synthesis of Polyoxygenated Heterocycles by Diastereoselective Functionalization of a Bio-Based Chiral Aldehyde Exploiting the Passerini Reaction. Molecules, 2020, 25, 3227.	3.8	5
15	An unexpected benzylic oxidation in the multicomponent synthesis of simplified analogs of anchinopeptolides and eusynstyelamides. Chemistry of Heterocyclic Compounds, 2020, 56, 467-472.	1.2	3
16	Regioselective Photooxidation of Citronellol: A Way to Monomers for Functionalized Bio-Polyesters. Frontiers in Chemistry, 2020, 8, 85.	3.6	4
17	Stereoselective Synthesis of 3,5â€Dihydroxypyrrolidinâ€2â€ones Through a Photoinduced Multicomponent Reaction Followed by Dimerization. European Journal of Organic Chemistry, 2019, 2019, 5992-5997.	2.4	3
18	Multicomponent Synthesis of Polyphenols and their in vitro Evaluation as Potential \hat{l}^2 -Amyloid Aggregation Inhibitors. Molecules, 2019, 24, 2636.	3.8	8

#	Article	IF	Citations
19	Photoredox-Catalyzed Generation of Acetonyl Radical in Flow: Theoretical Investigation and Synthetic Applications. ACS Catalysis, 2019, 9, 2493-2500.	11.2	25
20	Editorial: Diversity Oriented Synthesis. Frontiers in Chemistry, 2019, 6, 668.	3.6	2
21	Ovule Gene Expression Analysis in Sexual and Aposporous Apomictic Hypericum perforatum L. (Hypericaceae) Accessions. Frontiers in Plant Science, 2019, 10, 654.	3.6	14
22	Annotation and Expression of IDN2-like and FDM-like Genes in Sexual and Aposporous Hypericum perforatum L. accessions. Plants, 2019, 8, 158.	3.5	1
23	Photoorganocatalysis in Flow. Catalytic Science Series, 2019, , 519-558.	0.0	2
24	Improving the interest of high-school students toward chemistry by crime scene investigation. Chemistry Education Research and Practice, 2018, 19, 558-566.	2.5	7
25	Photoinduced Multicomponent Synthesis of α-Silyloxy Acrylamides, an Unexplored Class of Silyl Enol Ethers. Organic Letters, 2018, 20, 1098-1101.	4.6	20
26	Evidence of potential hybridization in the <i><scp>T</scp>haumetopoea pityocampaâ€wilkinsoni</i> complex. Agricultural and Forest Entomology, 2018, 20, 9-17.	1.3	11
27	Exploitation of the Ugi 5-Center-4-Component Reaction (U-5C-4CR) for the Generation of Diverse Libraries of Polycyclic (Spiro)Compounds. Frontiers in Chemistry, 2018, 6, 369.	3.6	10
28	Multi-Gram Synthesis of Enantiopure 1,5-Disubstituted Tetrazoles Via Ugi-Azide 3-Component Reaction. Molecules, 2018, 23, 2758.	3.8	11
29	Bicyclic Heterocycles from Levulinic Acid through a Fast and Operationally Simple Diversityâ€Oriented Multicomponent Approach. European Journal of Organic Chemistry, 2018, 2018, 5445-5455.	2.4	17
30	Zr-mediated synthesis of chiral cyclic imines and their application in Betti reactions. Chemistry of Heterocyclic Compounds, 2018, 54, 329-333.	1.2	9
31	Integrating biocatalysis and multicomponent reactions. Drug Discovery Today: Technologies, 2018, 29, 3-9.	4.0	6
32	Interrupted Ugi and Passerini Reactions: An Underexplored Treasure Island. Synthesis, 2018, 50, 3549-3570.	2.3	24
33	Diverse Cretaceous larvae reveal the evolutionary and behavioural history of antlions and lacewings. Nature Communications, 2018, 9, 3257.	12.8	67
34	Synthesis of seven-membered nitrogen heterocycles through the Ugi multicomponent reaction. Chemistry of Heterocyclic Compounds, 2017, 53, 382-408.	1.2	40
35	A total evidence phylogeny for the processionary moths of the genus <i>Thaumetopoea</i> (Lepidoptera: Notodontidae: Thaumetopoeinae). Cladistics, 2017, 33, 557-573.	3.3	10
36	To each his own: isonitriles for all flavors. Functionalized isocyanides as valuable tools in organic synthesis. Chemical Society Reviews, 2017, 46, 1295-1357.	38.1	327

3

#	Article	IF	Citations
37	Combination of Cross-Coupling and Metal Carbene Transformations for the Development of New Multicomponent Reactions., 2017,, 279-303.		0
38	Diversityâ€Oriented Synthesis of Various Enantiopure Heterocycles by Coupling Organocatalysis with Multicomponent Reactions. European Journal of Organic Chemistry, 2017, 2017, 6619-6628.	2.4	15
39	The highly rearranged mitochondrial genomes of the crabs Maja crispata and Maja squinado (Majidae) and gene order evolution in Brachyura. Scientific Reports, 2017, 7, 4096.	3.3	64
40	Photocatalyzed synthesis of isochromanones and isobenzofuranones under batch and flow conditions. Beilstein Journal of Organic Chemistry, 2017, 13, 1456-1462.	2.2	9
41	Passerini Reactions on Biocatalytically Derived Chiral Azetidines. Molecules, 2016, 21, 1153.	3.8	15
42	Diastereoselective Ugi reaction of chiral 1,3-aminoalcohols derived from an organocatalytic Mannich reaction. Beilstein Journal of Organic Chemistry, 2016, 12, 139-143.	2.2	15
43	Photoinduced Multicomponent Reactions. Angewandte Chemie - International Edition, 2016, 55, 15476-15484.	13.8	174
44	Photoinduzierte Mehrkomponentenreaktionen. Angewandte Chemie, 2016, 128, 15702-15711.	2.0	36
45	External-Oxidant-Based Multicomponent Reactions. Synthesis, 2016, 48, 4050-4059.	2.3	17
46	Access to Polycyclic Alkaloidâ€Like Structures by Coupling the Passerini and Ugi Reactions with Two Sequential Metalâ€Catalyzed Cyclizations. Advanced Synthesis and Catalysis, 2016, 358, 2940-2948.	4.3	15
47	Diastereoselective Passerini Reaction of Biobased Chiral Aldehydes: Divergent Synthesis of Various Polyfunctionalized Heterocycles. Organic Letters, 2016, 18, 1638-1641.	4.6	31
48	Cedrus ve Pinus ile ilişkili "yazlık―Thaumetopoea spp. (Lepidoptera: Notodontidae, Thaumetopoeinae) türlerine yönelik bir değerlendirme. Turkish Journal of Forestry, 2016, 17, 31.	0.1	1
49	Conjugation of Hydroxytyrosol with Other Natural Phenolic Fragments: From Waste to Antioxidants and Antitumour Compounds. European Journal of Organic Chemistry, 2015, 2015, 6710-6726.	2.4	12
50	Climate Warming and Past and Present Distribution of the Processionary Moths (Thaumetopoea spp.) in Europe, Asia Minor and North Africa., 2015, , 81-161.		30
51	Determination of selenium urinary metabolites by high temperature liquid chromatography-inductively coupled plasma mass spectrometry. Journal of Chromatography A, 2015, 1380, 112-119.	3.7	17
52	Ugi and Passerini Reactions of Biocatalytically Derived Chiral Aldehydes: Application to the Synthesis of Bicyclic Pyrrolidines and of Antiviral Agent Telaprevir. Journal of Organic Chemistry, 2015, 80, 3411-3428.	3.2	51
53	On stereocomplexed polylactide materials as support for PAMAM dendrimers: synthesis and properties. RSC Advances, 2015, 5, 46774-46784.	3.6	15
54	Toward a Green Atom Economy: Development of a Sustainable Multicomponent Reaction. Synthesis, 2015, 47, 2385-2390.	2.3	18

#	Article	IF	CITATIONS
55	Biobased System Composed of Electrospun sc-PLA/POSS/Cyclodextrin Fibers To Remove Water Pollutants. ACS Sustainable Chemistry and Engineering, 2015, 3, 2917-2924.	6.7	25
56	Is It an Ant or a Butterfly? Convergent Evolution in the Mitochondrial Gene Order of Hymenoptera and Lepidoptera. Genome Biology and Evolution, 2014, 6, 3326-3343.	2.5	87
57	Diversity-oriented synthesis of dihydrobenzoxazepinones by coupling the Ugi multicomponent reaction with a Mitsunobu cyclization. Beilstein Journal of Organic Chemistry, 2014, 10, 209-212.	2.2	17
58	Three in the Spotlight: Photoinduced Stereoselective Synthesis of (<i>Z</i>)-Acyloxyacrylamides through a Multicomponent Approach. Journal of Organic Chemistry, 2014, 79, 3615-3622.	3.2	30
59	The Alternative Route to Enantiopure Multicomponent Reaction Products: Biocatalytic or Organocatalytic Enantioselective Production of Inputs for Multicomponent Reactions. European Journal of Organic Chemistry, 2014, 2014, 2005-2015.	2.4	36
60	Enantio- and Diastereoselective Synthesis of Highly Substituted Benzazepines by a Multicomponent Strategy Coupled with Organocatalytic and Enzymatic Procedures. Journal of Organic Chemistry, 2014, 79, 339-351.	3.2	33
61	Synthesis of triazolo-fused benzoxazepines and benzoxazepinones via Passerini reactions followed by 1,3-dipolar cycloadditions. Molecular Diversity, 2014, 18, 473-482.	3.9	17
62	New Stereocomplex PLA-Based Fibers: Effect of POSS on Polymer Functionalization and Properties. Macromolecules, 2014, 47, 4718-4727.	4.8	61
63	OPHA (Oxidation–Passerini–Hydrolysis–Alkylation) Strategy: a Four-Step, One-Pot Improvement of the Alkylative Passerini Reaction. Organic Letters, 2014, 16, 2280-2283.	4.6	35
64	Longâ€Range Diastereoselectivity in an Ugi Reaction: Stereocontrolled and Diversityâ€Oriented Synthesis of Tetrahydrobenzoxazepines. European Journal of Organic Chemistry, 2013, 2013, 5064-5075.	2.4	25
65	PLA/POSS Nanofibers: A Novel System for the Immobilization of Metal Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2013, 5, 7688-7692.	8.0	43
66	Ketene Threeâ€Component Reaction: A Metalâ€Free Multicomponent Approach to Stereodefined Captodative Olefins. Angewandte Chemie - International Edition, 2013, 52, 2096-2099.	13.8	34
67	The <i>homo</i> â€PADAM Protocol: Stereoselective and Operationally Simple Synthesis of αâ€Oxoâ€or αâ€Hydroxyâ€Î³â€acylaminoamides and Chromanes. Chemistry - A European Journal, 2013, 19, 4563-4569.	3.3	24
68	Diversity oriented and chemoenzymatic synthesis of densely functionalized pyrrolidines through a highly diastereoselective Ugi multicomponent reaction. Organic and Biomolecular Chemistry, 2012, 10, 1255.	2.8	54
69	Development of a stereoselective Ugi reaction starting from an oxanorbornene \hat{l}^2 -amino acid derivative. Organic and Biomolecular Chemistry, 2012, 10, 3819.	2.8	21
70	Multicomponent approach to the alkaloid-type 2-aza-7-oxabicyclo[4.3.0]nonane framework. Tetrahedron Letters, 2012, 53, 6516-6518.	1.4	10
71	Organocatalytic Asymmetric Synthesis of βâ€Arylâ€Î²â€isocyano Esters. Advanced Synthesis and Catalysis, 2012, 354, 2199-2210.	4.3	18
72	A new diversity oriented and metal-free approach to highly functionalized 3H-pyrimidin-4-ones. Organic and Biomolecular Chemistry, 2011, 9, 2107.	2.8	6

#	Article	IF	CITATIONS
73	Novel Application of α-Azido Aldehydes in Multicomponent Reactions: Synthesis of Triazolo-Fused Dihydrooxazinones via a Passerini Reaction–Dipolar Cycloaddition Strategy. ACS Combinatorial Science, 2011, 13, 453-457.	3.8	47
74	Divergent Synthesis of Novel Five-Membered Heterocyclic Compounds by Base-Mediated Rearrangement of Acrylamides Derived from a Novel Isocyanide-Based Multicomponent Reaction. Molecules, 2011, 16, 8775-8787.	3.8	16
75	Tandem Ugi MCR/Mitsunobu Cyclization as a Short, Protectingâ€Groupâ€Free Route to Benzoxazinones with Four Diversity Points. European Journal of Organic Chemistry, 2011, 2011, 100-109.	2.4	47
76	Long-range diastereoselectivity in Ugi reactions of 2-substituted dihydrobenzoxazepines. Beilstein Journal of Organic Chemistry, 2011, 7, 976-979.	2.2	20
77	Beyond Ugi and Passerini Reactions: Multicomponent Approaches Based on Isocyanides and Alkynes as an Efficient Tool for Diversity Oriented Synthesis. Combinatorial Chemistry and High Throughput Screening, 2011, 14, 782-810.	1.1	39
78	Elaboration of Peptidomimetics Derived from a PADAM Approach: Synthesis of Polyfunctionalised 2(1H)-Pyrazinones via an Unexpected Aromatisation. Synlett, 2011, 2011, 2009-2012.	1.8	10
79	Optimized synthesis of phosphatidylserine. Amino Acids, 2010, 39, 367-373.	2.7	10
80	Multicomponent synthesis of dihydrobenzoxazepinones, bearing four diversity points, as potential \hat{l}_{\pm} -helix mimics. Molecular Diversity, 2010, 14, 425-442.	3.9	18
81	A Marriage of Convenience: Combining the Power of Isocyanideâ€Based Multicomponent Reactions with the Versatility of (Hetero)norbornene Chemistry. European Journal of Organic Chemistry, 2010, 2010, 1831-1841.	2.4	62
82	Enzymatically Asymmetrised Chiral Building Blocks for the Synthesis of Complex Natural Product Analogues: The Synthesis of Dynemicin Analogues from 2â€(Quinolinâ€4â€yl)propaneâ€1,3â€diol. European Journal of Organic Chemistry, 2010, 2010, 2768-2787.	2.4	5
83	Straightforward stereoselective synthesis of polyfunctionalised cyclohexenols using a multicomponent approach. Tetrahedron, 2010, 66, 2390-2397.	1.9	14
84	Synthesis of Novel Isochromene Derivatives by Tandem Ugi Reaction/Nucleophilic Substitution. Synlett, 2010, 2010, 85-88.	1.8	10
85	Coupling Isocyanide-Based Multicomponent Reactions with Aliphatic or Acyl Nucleophilic Substitution Processes. Synlett, 2010, 2010, 23-41.	1.8	109
86	Synthesis of 5-Carboxamide-oxazolines with a Passeriniâ^'Zhu/Staudingerâ^'Azaâ^'Wittig Two-Step Protocol. ACS Combinatorial Science, 2010, 12, 613-616.	3.3	35
87	A Highly Convergent Synthesis of Tricyclic N-Heterocycles Coupling an Ugi Reaction with a Tandem S _N 2′-Heck Double Cyclization. Journal of Organic Chemistry, 2010, 75, 5134-5143.	3.2	63
88	Isocyanides and Arylacetic Acids: Synthesis and Reactivity of 3-Aryl-2-acyloxyacrylamides, an Example of Serendipity-Oriented Synthesis. Organic Letters, 2009, 11, 4068-4071.	4.6	25
89	Identification of Lead Compounds As Antagonists of Protein Bcl-x _L with a Diversity-Oriented Multidisciplinary Approach. Journal of Medicinal Chemistry, 2009, 52, 7856-7867.	6.4	36
90	A novel intramolecular Ugi reaction with 7-azabicyclo [2.2.1] heptane derivatives followed by post-condensation acylations: a new entry to azanorbornyl peptidomimetics. Organic and Biomolecular Chemistry, 2009, 7, 253-258.	2.8	18

#	Article	IF	Citations
91	Multicomponent synthesis of benzoxazinones via tandem Ugi/Mitsunobu reactions: an unexpected cine-substitution. Molecular Diversity, 2008, 12, 187-190.	3.9	21
92	Synthesis and DNA-cleaving activity of lactenediynes conjugated with DNA-complexing moieties. Bioorganic and Medicinal Chemistry, 2008, 16, 3501-3518.	3.0	8
93	A convergent synthesis of enantiopure bicyclic scaffolds through multicomponent Ugi reaction. Tetrahedron, 2008, 64, 1114-1134.	1.9	53
94	Polyfunctionalized Pyrrolidines by Ugi Multicomponent Reaction Followed by Palladium-Mediated SN2†Cyclizations. Journal of Organic Chemistry, 2008, 73, 1608-1611.	3.2	37
95	Synthesis and biological evaluation of new conformationally biased integrin ligands based on a tetrahydroazoninone scaffold. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 1341-1345.	2.2	30
96	Ugi Multicomponent Reaction Followed by an Intramolecular Nucleophilic Substitution:Â Convergent Multicomponent Synthesis of 1-Sulfonyl 1,4-Diazepan-5-ones and of Their Benzo-Fused Derivatives. Journal of Organic Chemistry, 2007, 72, 2151-2160.	3.2	102
97	Multicomponent Synthesis of Novel 2- and 3-Substituted Dihydrobenzo[1,4]oxazepinones and Tetrahydrobenzo[1,4]diazepin-5-ones and Their Conformational Analysis. Heterocycles, 2007, 73, 699.	0.7	15
98	A New Highly Convergent Entry to Densely Functionalized Aziridines Based on the Ugi Reaction. QSAR and Combinatorial Science, 2006, 25, 457-460.	1.4	13
99	A new convergent and stereoselective synthesis of 2,5-disubstituted N-acylpyrrolidines. Tetrahedron, 2006, 62, 4331-4341.	1.9	8
100	Preparation of optically pure fused polycyclic scaffolds by Ugi reaction followed by olefin and enyne metathesis. Tetrahedron, 2006, 62, 8830-8837.	1.9	43
101	One-pot synthesis of \hat{I} ±-acyloxyaminoamides via nitrones as imine surrogates in the Ugi MCR. Tetrahedron Letters, 2005, 46, 8003-8006.	1.4	24
102	Asymmetric Isocyanide-Based MCRs. , 2005, , 1-32.		19
103	A Novel Highly Selective Chiral Auxiliary for the Asymmetric Synthesis ofl- andd-α-Amino Acid Derivatives via a Multicomponent Ugi Reaction. Journal of Organic Chemistry, 2005, 70, 575-579.	3.2	116
104	Application of tandem Ugi multi-component reaction/ring closing metathesis to the synthesis of a conformationally restricted cyclic pentapeptide. Organic and Biomolecular Chemistry, 2005, 3, 97.	2.8	46
105	Efficient chemoenzymatic enantioselective synthesis of diacylglycerols (DAG). Tetrahedron: Asymmetry, 2004, 15, 2889-2892.	1.8	22
106	U-4C-3CR versus U-5C-4CR and stereochemical outcomes using suitable bicyclic \hat{l}^2 -amino acid derivatives as bifunctional components in the Ugi reaction. Tetrahedron Letters, 2004, 45, 587-590.	1.4	50
107	Asymmetric synthesis of a new simplified dynemicin analogue equipped with a handle. Tetrahedron Letters, 2004, 45, 4221-4223.	1.4	13
108	Ugi multicomponent reaction with hydroxylamines: an efficient route to hydroxamic acid derivatives. Tetrahedron Letters, 2004, 45, 6109-6111.	1.4	38

#	Article	IF	CITATIONS
109	Enantio- and diastereoselective synthesis of 2,5-disubstituted pyrrolidines through a multicomponent Ugi reaction and their transformation into bicyclic scaffolds. Tetrahedron Letters, 2004, 45, 6637-6640.	1.4	44
110	Application of tandem Ugi reaction/ring-closing metathesis in multicomponent synthesis of unsaturated nine-membered lactams. Tetrahedron Letters, 2003, 44, 7655-7658.	1.4	75
111	Solid-phase synthesis of modified oligopeptides via Passerini multicomponent reaction. Tetrahedron Letters, 2003, 44, 2367-2370.	1.4	52
112	Site–site interactions within high-loading PAMAM dendrimer resin beads. Tetrahedron Letters, 2003, 44, 2699-2702.	1.4	19
113	Short synthesis of protease inhibitors via modified Passerini condensation of N-Boc-α-aminoaldehydes. Tetrahedron Letters, 2002, 43, 4067-4069.	1.4	62
114	Solid phase synthesis of aryl-ether dendrimers. Chemical Communications, 2001, , 697-698.	4.1	29
115	Solid-phase synthesis of hydroxyproline-based cyclic hexapeptides. Tetrahedron Letters, 2001, 42, 6687-6690.	1.4	8
116	Solid-phase Friedel–Crafts acylation on polystyrene resins-synthesis of antiepiletic 1-aryl-3,5-dihydro-4 H -2,3-benzodiazepin-4-ones. Tetrahedron Letters, 2001, 42, 7683-7685.	1.4	32
117	Solid-phase synthesis of aryl ethers on high loading dendrimer resin. Tetrahedron Letters, 2000, 41, 3763-3767.	1.4	35
118	Passerini reaction $\hat{a} \in \text{``Amine Deprotection } \hat{a} \in ``Acyl Migration (PADAM): a convenient strategy for the solid-phase preparation of peptidomimetic compounds. Molecular Diversity, 2000, 6, 227-235.$	3.9	38
119	Solidâ€phase dendrimer synthesis. Biopolymers, 1998, 47, 381-396.	2.4	1
120	Rational design, synthesis, and reactivity of lactendiynes, a new class of cyclic enediynes ortho-fused with the \hat{l}^2 -lactam ring. Tetrahedron, 1997, 53, 3249-3268.	1.9	34
121	Chemoenzymatic synthesis of asymmetrized bis(hydroxymethyl)propanoates (BHYMPâ´—) as a new family of chiral building blocks. Tetrahedron: Asymmetry, 1997, 8, 4079-4088.	1.8	11