

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8539232/publications.pdf Version: 2024-02-01

Deli

#	Article	IF	CITATIONS
1	Layered lithium transition metal oxide cathodes towards high energy lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 3680.	6.7	409
2	Li ₃ VO ₄ : A Promising Insertion Anode Material for Lithiumâ€ion Batteries. Advanced Energy Materials, 2013, 3, 428-432.	19.5	225
3	The water catalysis at oxygen cathodes of lithium–oxygen cells. Nature Communications, 2015, 6, 7843.	12.8	206
4	Three-dimensional porous graphene-like sheets synthesized from biocarbon <i>via</i> low-temperature graphitization for a supercapacitor. Green Chemistry, 2018, 20, 694-700.	9.0	202
5	Two-phase transition of Li-intercalation compounds in Li-ion batteries. Materials Today, 2014, 17, 451-463.	14.2	127
6	Surface coating of lithium–manganese-rich layered oxides with delaminated MnO2 nanosheets as cathode materials for Li-ion batteries. Journal of Materials Chemistry A, 2014, 2, 4422.	10.3	112
7	Synthesis of Double-Shell SnO ₂ @C Hollow Nanospheres as Sulfur/Sulfide Cages for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2016, 8, 27795-27802.	8.0	87
8	High stable post-spinel NaMn ₂ O ₄ cathode of sodium ion battery. Journal of Materials Chemistry A, 2014, 2, 14822-14826.	10.3	59
9	Improved cycling stability of LiNi0.6Co0.2Mn0.2O2 through microstructure consolidation by TiO2 coating for Li-ion batteries. Journal of Power Sources, 2020, 448, 227439.	7.8	56
10	Electrochemical Oscillation in Li-Ion Batteries. Joule, 2018, 2, 1265-1277.	24.0	44
11	Defect Engineering of Carbons for Energy Conversion and Storage Applications. Energy and Environmental Materials, 2023, 6, .	12.8	28
12	Radially Microstructural Design of LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Cathode Material toward Long-Term Cyclability and High Rate Capability at High Voltage. ACS Applied Energy Materials, 2020, 3, 6657-6669.	5.1	26
13	The Sizeâ€Dependent Phase Transition of LiFePO ₄ Particles during Charging and Discharging in Lithiumâ€Ion Batteries. Energy Technology, 2014, 2, 542-547.	3.8	23
14	Doping-induced memory effect in Li-ion batteries: the case of Al-doped Li ₄ Ti ₅ O ₁₂ . Chemical Science, 2015, 6, 4066-4070.	7.4	23
15	Relaxation-Induced Memory Effect of LiFePO ₄ Electrodes in Li-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 24561-24567.	8.0	23
16	The promotion of phase transitions for Ni-based layered cathode towards enhanced high-voltage cycle stability. Journal of Power Sources, 2020, 477, 228699.	7.8	20
17	Size-Dependent Memory Effect of the LiFePO ₄ Electrode in Li-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 41407-41414.	8.0	17
18	Lithium Borocarbide LiBC as an Anode Material for Rechargeable Li-Ion Batteries. Journal of Physical Chemistry C, 2018, 122, 18231-18236.	3.1	16

De Li

#	Article	IF	CITATIONS
19	A hybrid phase-transition model of olivine LiFePO4 for the charge and discharge processes. Journal of Power Sources, 2013, 233, 299-303.	7.8	15
20	High-voltage performance of concentration-gradient Li[Ni _{0.6} Co _{0.2} Mn _{0.2}]O ₂ layered oxide cathode materials for lithium batteries. New Journal of Chemistry, 2018, 42, 5868-5874.	2.8	13
21	Hierarchical carbon microstructures prepared from oil-palm-shell tracheids for Li–S batteries. New Journal of Chemistry, 2017, 41, 4110-4115.	2.8	12
22	Promotional recyclable Li-ion batteries by a magnetic binder with anti-vibration and non-fatigue performance. Journal of Materials Chemistry A, 2015, 3, 15403-15407.	10.3	11
23	Cathode materials with cross-stack structures for suppressing intergranular cracking and high-performance lithium-ion batteries. Electrochimica Acta, 2018, 261, 513-520.	5.2	11
24	Reversible Al-Site Switching and Consequent Memory Effect of Al-Doped Li4Ti5O12 in Li-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 17415-17423.	8.0	11
25	Coin-Cell-Based In Situ Characterization Techniques for Li-Ion Batteries. Frontiers in Energy Research, 2018, 6, .	2.3	10
26	Memory-effect-induced electrochemical oscillation of an Al-doped Li ₄ Ti ₅ O ₁₂ composite in Li-ion batteries. Chemical Communications, 2019, 55, 1279-1282.	4.1	7
27	A stable filamentous coaxial microelectrode for Li-ion batteries: a case of olivine LiFePO ₄ . Chemical Communications, 2019, 55, 3529-3531.	4.1	7
28	Electrochemical Oscillation during the Galvanostatic Charging of Li ₄ Ti ₅ O ₁₂ in Li-Ion Batteries. Journal of Physical Chemistry C, 2021, 125, 14549-14558.	3.1	6
29	Preparation of LiFePO4 Powders by Ultrasonic Spray Drying Method and Their Memory Effect. Materials, 2021, 14, 3193.	2.9	5
30	Crystallinity-dependent capacity of a LiBC anode material in Li-ion batteries. Physical Chemistry Chemical Physics, 2018, 20, 28176-28184.	2.8	4
31	Relieving the Reaction Heterogeneity at the Subparticle Scale in Ni-Rich Cathode Materials with Boosted Cyclability. ACS Applied Materials & Interfaces, 2022, 14, 6729-6739.	8.0	4
32	Fabrication of Single-Particle Microelectrodes and Their Electrochemical Properties. ACS Applied Materials & Interfaces, 2022, 14, 20981-20987.	8.0	4
33	Electrochemical Oscillation during Galvanostatic Charging of LiCrTiO4 in Li-Ion Batteries. Materials, 2021, 14, 3624.	2.9	3
34	High-Temperature Treatment to Improve the Capacity of LiBC Anode Material in Li-ion Battery. Frontiers in Energy Research, 2020, 8, .	2.3	2
35	Binder-Free Thin-Film Electrode Fabricated by Spray Drying Method: A Case of LiFePO4. Journal of Electrochemical Energy Conversion and Storage, 2021, 18, .	2.1	2
36	Understanding the interlayer rearrangement toward enhanced lithium storage for LiBC anode. Chemical Communications, 2021, 57, 12492-12495.	4.1	1

#	Article	IF	CITATIONS
37	Application of three-electrode technology in Li4Ti5O12 electrochemical oscillation system. Journal of Electroanalytical Chemistry, 2022, 918, 116494.	3.8	1

De Li