Sandeep T Koshy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8539193/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials, 2010, 31, 5536-5544.	5.7	1,864
2	Controlling the Porosity and Microarchitecture of Hydrogels for Tissue Engineering. Tissue Engineering - Part B: Reviews, 2010, 16, 371-383.	2.5	925
3	Extracellular matrix stiffness and composition jointly regulate the induction of malignant phenotypes in mammary epithelium. Nature Materials, 2014, 13, 970-978.	13.3	689
4	Matrix elasticity of void-forming hydrogels controls transplanted-stem-cell-mediated boneÂformation. Nature Materials, 2015, 14, 1269-1277.	13.3	390
5	Scaffolds that mimic antigen-presenting cells enable ex vivo expansion of primary T cells. Nature Biotechnology, 2018, 36, 160-169.	9.4	271
6	Synthesis and Characterization of Tunable Poly(Ethylene Glycol): Gelatin Methacrylate Composite Hydrogels. Tissue Engineering - Part A, 2011, 17, 1713-1723.	1.6	268
7	Injectable, porous, and cell-responsive gelatin cryogels. Biomaterials, 2014, 35, 2477-2487.	5.7	266
8	Versatile click alginate hydrogels crosslinked via tetrazine–norbornene chemistry. Biomaterials, 2015, 50, 30-37.	5.7	238
9	Influence of the stiffness of three-dimensional alginate/collagen-I interpenetrating networks on fibroblast biology. Biomaterials, 2014, 35, 8927-8936.	5.7	226
10	Liposomal Delivery Enhances Immune Activation by STING Agonists for Cancer Immunotherapy. Advanced Biology, 2017, 1, 1600013.	3.0	175
11	Potentiating Cancer Immunotherapy Using an Oncolytic Virus. Molecular Therapy, 2010, 18, 1430-1439.	3.7	146
12	Injectable nanocomposite cryogels for versatile protein drug delivery. Acta Biomaterialia, 2018, 65, 36-43.	4.1	134
13	Clickâ€Crosslinked Injectable Gelatin Hydrogels. Advanced Healthcare Materials, 2016, 5, 541-547.	3.9	129
14	Biomaterials for enhancing anti-cancer immunity. Current Opinion in Biotechnology, 2016, 40, 1-8.	3.3	115
15	Metabolic labeling and targeted modulation of dendritic cells. Nature Materials, 2020, 19, 1244-1252.	13.3	99
16	Injectable, Tough Alginate Cryogels as Cancer Vaccines. Advanced Healthcare Materials, 2018, 7, e1701469.	3.9	96
17	Vesicular Stomatitis Virus as a Novel Cancer Vaccine Vector to Prime Antitumor Immunity Amenable to Rapid Boosting With Adenovirus. Molecular Therapy, 2009, 17, 1814-1821.	3.7	95
18	Adjuvant‣oaded Subcellular Vesicles Derived From Disrupted Cancer Cells for Cancer Vaccination. Small, 2016, 12, 2321-2333.	5.2	39

SANDEEP T KOSHY

#	Article	IF	CITATIONS
19	Privileged Antigen Presentation in Splenic B Cell Follicles Maximizes T Cell Responses in Prime-Boost Vaccination. Journal of Immunology, 2016, 196, 4587-4595.	0.4	35
20	CD44 alternative splicing in gastric cancer cells is regulated by culture dimensionality and matrix stiffness. Biomaterials, 2016, 98, 152-162.	5.7	34
21	Anti-tumor immunity induced by ectopic expression of viral antigens is transient and limited by immune escape. Oncolmmunology, 2019, 8, e1568809.	2.1	22
22	Culture of myeloid dendritic cells from bone marrow precursors. Journal of Visualized Experiments, 2008, , .	0.2	11