Laurent Duret

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8539094/publications.pdf

Version: 2024-02-01

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	DILS: Demographic inferences with linked selection by using ABC. Molecular Ecology Resources, 2021, 21, 2629-2644.	2.2	32
2	Massive colonization of protein-coding exons by selfish genetic elements in Paramecium germline genomes. PLoS Biology, 2021, 19, e3001309.	2.6	30
3	Evolutionary Plasticity of Mating-Type Determination Mechanisms in <i>Paramecium aurelia </i> Sibling Species. Genome Biology and Evolution, 2021, 13, .	1.1	13
4	Population genomics supports clonal reproduction and multiple independent gains and losses of parasitic abilities in the most devastating nematode pest. Evolutionary Applications, 2020, 13, 442-457.	1.5	23
5	How consistent is RADâ€seq divergence with DNAâ€barcode based clustering in insects?. Molecular Ecology Resources, 2020, 20, 1294-1298.	2.2	4
6	Bedrock radioactivity influences the rate and spectrum of mutation. ELife, 2020, 9 , .	2.8	8
7	Global survey of mobile DNA horizontal transfer in arthropods reveals Lepidoptera as a prime hotspot. PLoS Genetics, 2019, 15, e1007965.	1.5	41
8	Evolution of replication origins in vertebrate genomes: rapid turnover despite selective constraints. Nucleic Acids Research, 2019, 47, 5114-5125.	6.5	10
9	GC-biased gene conversion conceals the prediction of the nearly neutral theory in avian genomes. Genome Biology, 2019, 20, 5.	3.8	37
10	PRDM9 Methyltransferase Activity Is Essential for Meiotic DNA Double-Strand Break Formation at Its Binding Sites. Molecular Cell, 2018, 69, 853-865.e6.	4.5	110
11	Codon Usage Bias in Animals: Disentangling the Effects of Natural Selection, Effective Population Size, and GC-Biased Gene Conversion. Molecular Biology and Evolution, 2018, 35, 1092-1103.	3.5	111
12	Unbiased Estimate of Synonymous and Nonsynonymous Substitution Rates with Nonstationary Base Composition. Molecular Biology and Evolution, 2018, 35, 734-742.	3 . 5	43
13	Life History Traits Impact the Nuclear Rate of Substitution but Not the Mitochondrial Rate in Isopods. Molecular Biology and Evolution, 2018, 35, 2900-2912.	3. 5	28
14	Less effective selection leads to larger genomes. Genome Research, 2017, 27, 1016-1028.	2.4	75
15	In vivo binding of PRDM9 reveals interactions with noncanonical genomic sites. Genome Research, 2017, 27, 580-590.	2.4	67
16	The Red Queen model of recombination hot-spot evolution: a theoretical investigation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160463.	1.8	32
17	The fitness cost of mis-splicing is the main determinant of alternative splicing patterns. Genome Biology, 2017, 18, 208.	3 . 8	76
18	Recombination, meiotic expression and human codon usage. ELife, 2017, 6, .	2.8	59

#	Article	IF	Citations
19	No Evidence That Nitrogen Limitation Influences the Elemental Composition of Isopod Transcriptomes and Proteomes. Molecular Biology and Evolution, 2016, 33, 2605-2620.	3.5	9
20	Occurrence of a non deleterious gene conversion event in the <scp><i>BRCA</i></scp> <i>116Genes Chromosomes and Cancer, 2015, 54, 646-652.</i>	1.5	3
21	Quantification of GC-biased gene conversion in the human genome. Genome Research, 2015, 25, 1215-1228.	2.4	127
22	Optimization of multiplexed RADseq libraries using low-cost adaptors. Genetica, 2015, 143, 139-143.	0.5	4
23	GC-Content Evolution in Bacterial Genomes: The Biased Gene Conversion Hypothesis Expands. PLoS Genetics, 2015, 11, e1004941.	1.5	200
24	The Spatiotemporal Program of DNA Replication Is Associated with Specific Combinations of Chromatin Marks in Human Cells. PLoS Genetics, 2014, 10, e1004282.	1.5	123
25	The Red Queen Model of Recombination Hotspots Evolution in the Light of Archaic and Modern Human Genomes. PLoS Genetics, 2014, 10, e1004790.	1.5	62
26	Strong Heterogeneity in Mutation Rate Causes Misleading Hallmarks of Natural Selection on Indel Mutations in the Human Genome. Molecular Biology and Evolution, 2014, 31, 23-36.	3.5	16
27	Estimation of theRNU2macrosatellite mutation rate byBRCA1mutation tracing. Nucleic Acids Research, 2014, 42, 9121-9130.	6.5	4
28	XACT, a long noncoding transcript coating the active X chromosome in human pluripotent cells. Nature Genetics, 2013, 45, 239-241.	9.4	125
29	The origin, evolution, and functional impact of short insertion–deletion variants identified in 179 human genomes. Genome Research, 2013, 23, 749-761.	2.4	206
30	GC-Biased Gene Conversion in Yeast Is Specifically Associated with Crossovers: Molecular Mechanisms and Evolutionary Significance. Molecular Biology and Evolution, 2013, 30, 1409-1419.	3.5	87
31	Genome-scale coestimation of species and gene trees. Genome Research, 2013, 23, 323-330.	2.4	223
32	Is <scp>RAD</scp> â€seq suitable for phylogenetic inference? An in silico assessment and optimization. Ecology and Evolution, 2013, 3, 846-852.	0.8	162
33	The Paramecium Germline Genome Provides a Niche for Intragenic Parasitic DNA: Evolutionary Dynamics of Internal Eliminated Sequences. PLoS Genetics, 2012, 8, e1002984.	1.5	154
34	Evidence for Widespread GC-biased Gene Conversion in Eukaryotes. Genome Biology and Evolution, 2012, 4, 675-682.	1.1	154
35	Ultra-fast sequence clustering from similarity networks with SiLiX. BMC Bioinformatics, 2011, 12, 116.	1.2	271
36	Meiotic recombination favors the spreading of deleterious mutations in human populations. Human Mutation, 2011, 32, 198-206.	1.1	37

#	Article	IF	CITATIONS
37	Effector diversification within compartments of the Leptosphaeria maculans genome affected by Repeat-Induced Point mutations. Nature Communications, 2011, 2, 202.	5.8	481
38	Ftx is a non-coding RNA which affects Xist expression and chromatin structure within the X-inactivation center region. Human Molecular Genetics, 2011, 20, 705-718.	1.4	222
39	Preventing Dangerous Nonsense: Selection for Robustness to Transcriptional Error in Human Genes. PLoS Genetics, 2011, 7, e1002276.	1.5	39
40	Gene expression in a paleopolyploid: a transcriptome resource for the ciliate Paramecium tetraurelia. BMC Genomics, 2010, 11, 547.	1.2	64
41	Detecting positive selection within genomes: the problem of biased gene conversion. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 2571-2580.	1.8	130
42	The Relationship among Gene Expression, the Evolution of Gene Dosage, and the Rate of Protein Evolution. PLoS Genetics, 2010, 6, e1000944.	1.5	189
43	<i>Paramecium tetraurelia:</i> The Renaissance of an Early Unicellular Model. Cold Spring Harbor Protocols, 2010, 2010, pdb.emo140.	0.2	43
44	Silencing Specific <i>Paramecium tetraurelia</i> Genes by Feeding Double-Stranded RNA. Cold Spring Harbor Protocols, 2010, 2010, pdb.prot5363.	0.2	27
45	Mutation Patterns in the Human Genome: More Variable Than Expected. PLoS Biology, 2009, 7, e1000028.	2.6	42
46	The Relationship between DNA Replication and Human Genome Organization. Molecular Biology and Evolution, 2009, 26, 729-741.	3.5	43
47	Comment on "Human-Specific Gain of Function in a Developmental Enhancer". Science, 2009, 323, 714-714.	6.0	30
48	GC-biased gene conversion promotes the fixation of deleterious amino acid changes in primates. Trends in Genetics, 2009, 25, 1-5.	2.9	167
49	Monoallelic expression and tissue specificity are associated with high crossover rates. Trends in Genetics, 2009, 25, 519-522.	2.9	20
50	Databases of homologous gene families for comparative genomics. BMC Bioinformatics, 2009, 10, S3.	1.2	118
51	Biased Gene Conversion and the Evolution of Mammalian Genomic Landscapes. Annual Review of Genomics and Human Genetics, 2009, 10, 285-311.	2.5	607
52	Differential Retention of Metabolic Genes Following Whole-Genome Duplication. Molecular Biology and Evolution, 2009, 26, 1067-1072.	3.5	38
53	Translational control of intron splicing in eukaryotes. Nature, 2008, 451, 359-362.	13.7	200
54	Genome-wide studies highlight indirect links between human replication origins and gene regulation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15837-15842.	3.3	267

#	Article	IF	Citations
55	Analysis of sequence variability in the macronuclear DNA of <i>Paramecium tetraurelia: </i> A somatic view of the germline. Genome Research, 2008, 18 , $585-596$.	2.4	82
56	The Impact of Recombination on Nucleotide Substitutions in the Human Genome. PLoS Genetics, 2008, 4, e1000071.	1.5	303
57	ISG20L2, a Novel Vertebrate Nucleolar Exoribonuclease Involved in Ribosome Biogenesis. Molecular and Cellular Proteomics, 2008, 7, 546-559.	2.5	38
58	Pervasive positive selection on duplicated and nonduplicated vertebrate protein coding genes. Genome Research, 2008, 18, 1393-1402.	2.4	73
59	Identification and characterization of human Mex-3 proteins, a novel family of evolutionarily conserved RNA-binding proteins differentially localized to processing bodies. Nucleic Acids Research, 2007, 35, 1289-1300.	6.5	127
60	Unexpected observations after mapping LongSAGE tags to the human genome. BMC Bioinformatics, 2007, 8, 154.	1.2	14
61	Adaptation or biased gene conversion? Extending the null hypothesis of molecular evolution. Trends in Genetics, 2007, 23, 273-277.	2.9	214
62	A new perspective on isochore evolution. Gene, 2006, 385, 71-74.	1.0	88
63	Global trends of whole-genome duplications revealed by the ciliate Paramecium tetraurelia. Nature, 2006, 444, 171-178.	13.7	744
64	The Xist RNA Gene Evolved in Eutherians by Pseudogenization of a Protein-Coding Gene. Science, 2006, 312, 1653-1655.	6.0	371
65	GC Content Evolution of the Human and Mouse Genomes: Insights from the Study of Processed Pseudogenes in Regions of Different Recombination Rates. Journal of Molecular Evolution, 2006, 62, 745-752.	0.8	23
66	The GC Content of Primates and Rodents Genomes Is Not at Equilibrium: A Reply to Antezana. Journal of Molecular Evolution, 2006, 62, 803-806.	0.8	18
67	No Evidence for Tissue-Specific Adaptation of Synonymous Codon Usage in Humans. Molecular Biology and Evolution, 2006, 23, 523-529.	3.5	73
68	Evolutionary Origin and Maintenance of Coexpressed Gene Clusters in Mammals. Molecular Biology and Evolution, 2006, 23, 1715-1723.	3.5	123
69	Relationship between gene expression and GC-content in mammals: statistical significance and biological relevance. Human Molecular Genetics, 2005, 14, 421-427.	1.4	85
70	Homology-dependent methylation in primate repetitive DNA. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 5471-5476.	3.3	50
71	Tree pattern matching in phylogenetic trees: automatic search for orthologs or paralogs in homologous gene sequence databases. Bioinformatics, 2005, 21, 2596-2603.	1.8	161
72	Natural history of the ERVWE1 endogenous retroviral locus. Retrovirology, 2005, 2, 57.	0.9	19

#	Article	IF	CITATIONS
73	Evidence of Selection on the Domesticated ERVWE1 env Retroviral Element Involved in Placentation. Molecular Biology and Evolution, 2004, 21, 1895-1901.	3.5	53
74	Polymorphix: a sequence polymorphism database. Nucleic Acids Research, 2004, 33, D481-D484.	6.5	17
7 5	The endogenous retroviral locus ERVWE1 is a bona fide gene involved in hominoid placental physiology. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1731-1736.	3.3	192
76	Recombination Drives the Evolution of GC-Content in the Human Genome. Molecular Biology and Evolution, 2004, 21, 984-990.	3.5	302
77	Physical and transcript map of the autosomal dominant colobomatous microphthalmia locus on chromosome 15q12–q15 and refinement to a 4.4 Mb region. European Journal of Human Genetics, 2004, 12, 574-578.	1.4	10
78	Evidence that functional transcription units cover at least half of the human genome. Trends in Genetics, 2004, 20, 229-232.	2.9	35
79	The Decline of Isochores in Mammals: An Assessment of the GC ContentVariation Along the Mammalian Phylogeny. Journal of Molecular Evolution, 2004, 58, 653-660.	0.8	63
80	HOPPSIGEN: a database of human and mouse processed pseudogenes. Nucleic Acids Research, 2004, 33, D59-D66.	6.5	44
81	Subcellular localization of 14-3-3 proteins inToxoplasma gondiitachyzoites and evidence for a lipid raft-associated form. FEMS Microbiology Letters, 2003, 224, 161-168.	0.7	35
82	Placenta-Specific INSL4 Expression Is Mediated by a Human Endogenous Retrovirus Element1. Biology of Reproduction, 2003, 68, 1422-1429.	1.2	86
83	Integrated databanks access and sequence/structure analysis services at the PBIL. Nucleic Acids Research, 2003, 31, 3393-3399.	6.5	28
84	Neutral effect of recombination on base composition in Drosophila. Genetical Research, 2003, 81, 79-87.	0.3	69
85	Patterns of Selection Against Transposons Inferred From the Distribution of Tc1, Tc3 and Tc5 Insertions in the <i>mut-7</i> Line of the Nematode <i>Caenorhabditis elegans</i> Genetics, 2003, 165, 1127-1135.	1.2	31
86	Hovergen: Comparative Analysis of Homologous Vertebrate Genes., 2002,, 21-35.		0
87	Evolution of synonymous codon usage in metazoans. Current Opinion in Genetics and Development, 2002, 12, 640-649.	1.5	460
88	Expected Relationship Between the Silent Substitution Rate and the GC Content: Implications for the Evolution of Isochores. Journal of Molecular Evolution, 2002, 54, 129-133.	0.8	41
89	Vanishing GC-Rich Isochores in Mammalian Genomes. Genetics, 2002, 162, 1837-1847.	1.2	157
90	Comparative Sequence Analysis of the X-Inactivation Center Region in Mouse, Human, and Bovine. Genome Research, 2002, 12, 894-908.	2.4	212

#	Article	IF	CITATIONS
91	A Medicago truncatula Homoglutathione Synthetase Is Derived from Glutathione Synthetase by Gene Duplication. Plant Physiology, 2001, 126, 1706-1715.	2.3	62
92	Determinants of CpG Islands: Expression in Early Embryo and Isochore Structure. Genome Research, 2001, 11, 1854-1860.	2.4	105
93	Synonymous Codon Usage, Accuracy of Translation, and Gene Length in Caenorhabditis elegans. Journal of Molecular Evolution, 2001, 52, 275-280.	0.8	121
94	The Elevated GC Content at Exonic Third Sites Is Not Evidence Against Neutralist Models of Isochore Evolution. Molecular Biology and Evolution, 2001, 18, 757-762.	3 . 5	45
95	Determinants of Substitution Rates in Mammalian Genes: Expression Pattern Affects Selection Intensity but Not Mutation Rate. Molecular Biology and Evolution, 2000, 17, 68-070.	3.5	475
96	The Covariation Between TpA Deficiency, CpG Deficiency, and G+C Content of Human Isochores Is Due to a Mathematical Artifact. Molecular Biology and Evolution, 2000, 17, 1620-1625.	3 . 5	77
97	tRNA gene number and codon usage in the C. elegans genome are co-adapted for optimal translation of highly expressed genes. Trends in Genetics, 2000, 16, 287-289.	2.9	375
98	Chromosomal Distribution and Coding Capacity of the Human Endogenous Retrovirus HERV-W Family. AIDS Research and Human Retroviruses, 2000, 16, 731-740.	0.5	90
99	Nature and Structure of Human Genes that Generate Retropseudogenes. Genome Research, 2000, 10, 672-678.	2.4	167
100	HOBACGEN: Database System for Comparative Genomics in Bacteria. Genome Research, 2000, 10, 379-385.	2.4	69
100	HOBACGEN: Database System for Comparative Genomics in Bacteria. Genome Research, 2000, 10, 379-385. Identification and molecular analysis of BANP. Gene, 2000, 253, 189-196.	1.0	69 21
101	Identification and molecular analysis of BANP. Gene, 2000, 253, 189-196. Transposons but Not Retrotransposons Are Located Preferentially in Regions of High Recombination	1.0	21
101	Identification and molecular analysis of BANP. Gene, 2000, 253, 189-196. Transposons but Not Retrotransposons Are Located Preferentially in Regions of High Recombination Rate in <i>Caenorhabditis elegans</i> Use of a TT virus ORF1 recombinant protein to detect anti-TT virus antibodies in human sera. Journal of	1.0	21 124
101 102 103	Identification and molecular analysis of BANP. Gene, 2000, 253, 189-196. Transposons but Not Retrotransposons Are Located Preferentially in Regions of High Recombination Rate in <i>Caenorhabditis elegans</i> Use of a TT virus ORF1 recombinant protein to detect anti-TT virus antibodies in human sera. Journal of General Virology, 2000, 81, 2949-2958. Molecular Characterization and Placental Expression of HERV-W, a New Human Endogenous	1.0 1.2 1.3	21 124 56
101 102 103	Identification and molecular analysis of BANP. Gene, 2000, 253, 189-196. Transposons but Not Retrotransposons Are Located Preferentially in Regions of High Recombination Rate in <i>Caenorhabditis elegans </i> Use of a TT virus ORF1 recombinant protein to detect anti-TT virus antibodies in human sera. Journal of General Virology, 2000, 81, 2949-2958. Molecular Characterization and Placental Expression of HERV-W, a New Human Endogenous Retrovirus Family. Journal of Virology, 1999, 73, 1175-1185. Regulation of dauer larva development in Caenorhabditis elegans by daf-18, a homologue of the	1.0 1.2 1.3	21 124 56 333
101 102 103 104	Identification and molecular analysis of BANP. Gene, 2000, 253, 189-196. Transposons but Not Retrotransposons Are Located Preferentially in Regions of High Recombination Rate in ⟨i⟩Caenorhabditis elegans⟨li⟩. Genetics, 2000, 156, 1661-1669. Use of a TT virus ORF1 recombinant protein to detect anti-TT virus antibodies in human sera. Journal of General Virology, 2000, 81, 2949-2958. Molecular Characterization and Placental Expression of HERV-W, a New Human Endogenous Retrovirus Family. Journal of Virology, 1999, 73, 1175-1185. Regulation of dauer larva development in Caenorhabditis elegans by daf-18, a homologue of the tumour suppressor PTEN. Current Biology, 1999, 9, 329-334. Human and nematode orthologs â€" lessons from the analysis of 1800 human genes and the proteome	1.0 1.2 1.3 1.5	21 124 56 333

#	Article	IF	CITATIONS
109	Searching for regulatory elements in human noncoding sequences. Current Opinion in Structural Biology, 1997, 7, 399-406.	2.6	208
110	Cloning and characterization of a gene encoding a novel immunodominant antigen of Trypanosoma cruzi1Note: Nucleotide Sequence data reported in this paper are available in the GenBankâ,,¢ data base under the accession number U24190 and U96914.1. Molecular and Biochemical Parasitology, 1997, 87, 193-204.	0.5	3
111	Evolutionary Affinities of the Order Perissodactyla and the Phylogenetic Status of the Superordinal Taxa Ungulata and Altungulata. Molecular Phylogenetics and Evolution, 1997, 7, 195-200.	1.2	29
112	Phylogenetic position of the order Lagomorpha (rabbits, hares and allies). Nature, 1996, 379, 333-335.	13.7	261
113	LALNVIEW: a graphical viewer for pairwise sequence alignments. Bioinformatics, 1996, 12, 507-510.	1.8	39
114	Statistical analysis of vertebrate sequences reveals that long genes are scarce in GC-rich isochores. Journal of Molecular Evolution, 1995, 40, 308-317.	0.8	232
115	Isolation and characterization of a cDNA encoding a chicken actin-like protein. Gene, 1995, 154, 205-209.	1.0	13
116	HOVERGEN: a database of homologous vertebrate genes. Nucleic Acids Research, 1994, 22, 2360-2365.	6.5	216
117	Strong conservation of non-coding sequences during vertebrates evolution: potential involvement in post-transcriptional regulation of gene expression. Nucleic Acids Research, 1993, 21, 2315-2322.	6.5	156