Jiaxi Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8538787/publications.pdf Version: 2024-02-01

Ιιλγι Ζμοι

#	Article	IF	CITATIONS
1	Comparison of porcine ALG and rabbit ATG on outcomes of HLA-haploidentical hematopoietic stem cell transplantation for patients with acquired aplastic anemia. Cancer Cell International, 2022, 22, 89.	1.8	3
2	Decoding the pathogenesis of Diamond–Blackfan anemia using single-cell RNA-seq. Cell Discovery, 2022, 8, 41.	3.1	14
3	Single-cell transcriptomic analysis identifies an immune-prone population in erythroid precursors during human ontogenesis. Nature Immunology, 2022, 23, 1109-1120.	7.0	30
4	Illustrated Stateâ€ofâ€theâ€Art Capsules of the ISTH 2022 Congress. Research and Practice in Thrombosis and Haemostasis, 2022, 6, e12747.	1.0	4
5	Decoding Human Megakaryocyte Development. Cell Stem Cell, 2021, 28, 535-549.e8.	5.2	79
6	Hematopoietic Stem Cell Heterogeneity Is Linked to the Initiation and Therapeutic Response of Myeloproliferative Neoplasms. Cell Stem Cell, 2021, 28, 502-513.e6.	5.2	36
7	Characterization of Cellular Heterogeneity and an Immune Subpopulation of Human Megakaryocytes. Advanced Science, 2021, 8, e2100921.	5.6	29
8	Receptor-mediated mitophagy regulates EPO production and protects against renal anemia. ELife, 2021, 10, .	2.8	11
9	The Heterogeneity of Megakaryocytes and Platelets and Implications for Ex Vivo Platelet Generation. Stem Cells Translational Medicine, 2021, 10, 1614-1620.	1.6	11
10	A splicing factor switch controls hematopoietic lineage specification of pluripotent stem cells. EMBO Reports, 2021, 22, e50535.	2.0	9
11	Heat shock transcription factor 1 regulates the fetal γ-globin expression in a stress-dependent and independent manner during erythroid differentiation. Experimental Cell Research, 2020, 387, 111780.	1.2	2
12	Advances in the understanding of poor graft function following allogeneic hematopoietic stem-cell transplantation. Therapeutic Advances in Hematology, 2020, 11, 204062072094874.	1.1	26
13	Biphasic Regulation of Mesenchymal Genes Controls Fate Switches During Hematopoietic Differentiation of Human Pluripotent Stem Cells. Advanced Science, 2020, 7, 2001019.	5.6	8
14	Severe ineffective erythropoiesis discriminates prognosis in myelodysplastic syndromes: analysis based on 776 patients from a single centre. Blood Cancer Journal, 2020, 10, 83.	2.8	1
15	LGR4, Not LGR5, Enhances hPSC Hematopoiesis by Facilitating Mesoderm Induction via TGF-Beta Signaling Activation. Cell Reports, 2020, 31, 107600.	2.9	9
16	MSX2 suppression through inhibition of TGFβ signaling enhances hematopoietic differentiation of human embryonic stem cells. Stem Cell Research and Therapy, 2020, 11, 147.	2.4	6
17	Loss of Tet2 affects platelet function but not coagulation in mice. Blood Science, 2020, 2, 129-136.	0.4	5
18	Overexpression of GATA2 Enhances Development and Maintenance of Human Embryonic Stem Cell-Derived Hematopoietic Stem Cell-like Progenitors. Stem Cell Reports, 2019, 13, 31-47.	2.3	22

Јіахі Zhou

#	Article	lF	CITATIONS
19	R-spondin2 promotes hematopoietic differentiation of human pluripotent stem cells by activating TGF beta signaling. Stem Cell Research and Therapy, 2019, 10, 136.	2.4	7
20	Decitabine improves platelet recovery by down-regulating IL-8 level in MDS/AML patients with thrombocytopenia. Blood Cells, Molecules, and Diseases, 2019, 76, 66-71.	0.6	20
21	Inflammation-Associated Cytokines IGFBP1 and RANTES Impair the Megakaryocytic Potential of HSCs in PT Patients after Allo-HSCT. Biology of Blood and Marrow Transplantation, 2018, 24, 1142-1151.	2.0	10
22	MEIS1 Regulates Hemogenic Endothelial Generation, Megakaryopoiesis, and Thrombopoiesis in Human Pluripotent Stem Cells by Targeting TAL1 and FLI1. Stem Cell Reports, 2018, 10, 447-460.	2.3	56
23	Function of FEZF1 during early neural differentiation of human embryonic stem cells. Science China Life Sciences, 2018, 61, 35-45.	2.3	4
24	MEIS2 regulates endothelial to hematopoietic transition of human embryonic stem cells by targeting TAL1. Stem Cell Research and Therapy, 2018, 9, 340.	2.4	29
25	Long non-coding RNA-dependent mechanism to regulate heme biosynthesis and erythrocyte development. Nature Communications, 2018, 9, 4386.	5.8	84
26	MSX2 Initiates and Accelerates Mesenchymal Stem/Stromal Cell Specification of hPSCs by Regulating TWIST1 and PRAME. Stem Cell Reports, 2018, 11, 497-513.	2.3	56
27	Effect of microgravity on proliferation and differentiation of embryonic stem cells in an automated culturing system during the <scp>TZ</scp> â€1 space mission. Cell Proliferation, 2018, 51, e12466.	2.4	29
28	Thrombopoietin knock-in augments platelet generation from human embryonic stem cells. Stem Cell Research and Therapy, 2018, 9, 194.	2.4	24
29	Early Development of Definitive Erythroblasts from Human Pluripotent Stem Cells Defined by Expression of Glycophorin A/CD235a, CD34, and CD36. Stem Cell Reports, 2016, 7, 869-883.	2.3	60
30	Integrated Biophysical and Biochemical Signals Augment Megakaryopoiesis and Thrombopoiesis in a Three-Dimensional Rotary Culture System. Stem Cells Translational Medicine, 2016, 5, 175-185.	1.6	26
31	MSX2 mediates entry of human pluripotent stem cells into mesendoderm by simultaneously suppressing SOX2 and activating NODAL signaling. Cell Research, 2015, 25, 1314-1332.	5.7	60
32	Extracellular Acidification Acts as a Key Modulator of Neutrophil Apoptosis and Functions. PLoS ONE, 2015, 10, e0137221.	1.1	44
33	Rotary Suspension Culture Enhances Mesendoderm Differentiation of Embryonic Stem Cells Through Modulation of Wnt/β-catenin Pathway. Stem Cell Reviews and Reports, 2014, 10, 526-538.	5.6	33
34	High-efficiency motor neuron differentiation from human pluripotent stem cells and the function of Islet-1. Nature Communications, 2014, 5, 3449.	5.8	121
35	Establishment of a highly efficient hematopoietic differentiation model from human embryonic stem cells for functional screening. Science China Life Sciences, 2013, 56, 1147-1149.	2.3	4
36	High-Efficiency Induction of Neural Conversion in Human ESCs and Human Induced Pluripotent Stem Cells with a Single Chemical Inhibitor of Transforming Growth Factor Beta Superfamily Receptors Â. Stem Cells, 2010, 28, 1741-1750.	1.4	151