List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/853853/publications.pdf Version: 2024-02-01

IAN SCHWAR

#	Article	IF	CITATIONS
1	Resolvin E1 and protectin D1 activate inflammation-resolution programmes. Nature, 2007, 447, 869-874.	13.7	1,046
2	Central nervous system injury-induced immune deficiency syndrome. Nature Reviews Neuroscience, 2005, 6, 775-786.	4.9	776
3	Hypoxia-inducible factor–dependent induction of netrin-1 dampens inflammation caused by hypoxia. Nature Immunology, 2009, 10, 195-202.	7.0	369
4	The Rho/ROCK pathway mediates neurite growth-inhibitory activity associated with the chondroitin sulfate proteoglycans of the CNS glial scar. Molecular and Cellular Neurosciences, 2003, 22, 319-330.	1.0	362
5	Nâ€methylâ€ <scp>D</scp> â€aspartate receptor antibodies in herpes simplex encephalitis. Annals of Neurology, 2012, 72, 902-911.	2.8	343
6	The paradox of chronic neuroinflammation, systemic immune suppression, autoimmunity after traumatic chronic spinal cord injury. Experimental Neurology, 2014, 258, 121-129.	2.0	204
7	Experimental strategies to promote spinal cord regeneration—an integrative perspective. Progress in Neurobiology, 2006, 78, 91-116.	2.8	197
8	Lipoxins and new lipid mediators in the resolution of inflammation. Current Opinion in Pharmacology, 2006, 6, 414-420.	1.7	180
9	Spinal cord injury-induced immune deficiency syndrome enhances infection susceptibility dependent on lesion level. Brain, 2016, 139, 692-707.	3.7	180
10	Lumbar spinal stenosis: syndrome, diagnostics and treatment. Nature Reviews Neurology, 2009, 5, 392-403.	4.9	147
11	Spinal cord injury-induced immunodeficiency is mediated by a sympathetic-neuroendocrine adrenal reflex. Nature Neuroscience, 2017, 20, 1549-1559.	7.1	133
12	Functional neurological recovery after spinal cord injury is impaired in patients with infections. Brain, 2012, 135, 3238-3250.	3.7	132
13	Maresin 1 Promotes Inflammatory Resolution, Neuroprotection, and Functional Neurological Recovery After Spinal Cord Injury. Journal of Neuroscience, 2017, 37, 11731-11743.	1.7	130
14	CD14 expression by activated parenchymal microglia/macrophages and infiltrating monocytes following human traumatic brain injury. Acta Neuropathologica, 2002, 103, 541-549.	3.9	127
15	Spinal cord injury-induced immune depression syndrome (SCI-IDS). European Journal of Neuroscience, 2007, 25, 1743-1747.	1.2	121
16	Spinal cord injuryâ€induced lesional expression of the repulsive guidance molecule (RGM). European Journal of Neuroscience, 2005, 21, 1569-1576.	1.2	104
17	Anesthetics Impact the Resolution of Inflammation. PLoS ONE, 2008, 3, e1879.	1.1	101
18	COX-3: just another COX or the solitary elusive target of paracetamol?. Lancet, The, 2003, 361, 981-982.	6.3	99

#	Article	IF	CITATIONS
19	Acute and non-resolving inflammation associate with oxidative injury after human spinal cord injury. Brain, 2021, 144, 144-161.	3.7	95
20	Nonâ€Resolving Aspects of Acute Inflammation after Spinal Cord Injury (SCI): Indices and Resolution Plateau. Brain Pathology, 2011, 21, 652-660.	2.1	93
21	Long-term functional outcome in patients with acquired infections after acute spinal cord injury. Neurology, 2017, 88, 892-900.	1.5	87
22	Proresolution Lipid Mediators in Multiple Sclerosis — Differential, Disease Severity-Dependent Synthesis — A Clinical Pilot Trial. PLoS ONE, 2013, 8, e55859.	1.1	85
23	AIF-1 expression defines a proliferating and alert microglial/macrophage phenotype following spinal cord injury in rats. Journal of Neuroimmunology, 2001, 119, 214-222.	1.1	83
24	The neuroanatomical–functional paradox in spinal cord injury. Nature Reviews Neurology, 2021, 17, 53-62.	4.9	82
25	Persistent accumulation of cyclooxygenase-1—expressing microglial cells and macrophages and transient upregulation by endothelium in human brain injury. Journal of Neurosurgery, 2002, 96, 892-899.	0.9	81
26	Effect and Reporting Bias of RhoA/ROCK-Blockade Intervention on Locomotor Recovery After Spinal Cord Injury. JAMA Neurology, 2014, 71, 91.	4.5	80
27	Infiltrating CD14+ monocytes and expression of CD14 by activated parenchymal microglia/macrophages contribute to the pool of CD14+ cells in ischemic brain lesions. Journal of Neuroimmunology, 2002, 126, 107-115.	1.1	78
28	Spinal cord injury induces early and persistent lesional P2X4 receptor expression. Journal of Neuroimmunology, 2005, 163, 185-189.	1.1	78
29	Central Nervous System Injury–Induced Repulsive Guidance Molecule Expression in the Adult Human Brain. Archives of Neurology, 2005, 62, 1561-8.	4.9	75
30	Large animal and primate models of spinal cord injury for the testing of novel therapies. Experimental Neurology, 2015, 269, 154-168.	2.0	75
31	Olfactory Ensheathing Cell Transplantation in Experimental Spinal Cord Injury: Effect size and Reporting Bias of 62 Experimental Treatments: A Systematic Review and Meta-Analysis. PLoS Biology, 2016, 14, e1002468.	2.6	70
32	Neurochemical biomarkers in spinal cord injury. Spinal Cord, 2019, 57, 819-831.	0.9	65
33	Timed Action of IL-27 Protects from Immunopathology while Preserving Defense in Influenza. PLoS Pathogens, 2014, 10, e1004110.	2.1	62
34	COXâ€3—a virtual pain target in humans?. FASEB Journal, 2003, 17, 2174-2175.	0.2	59
35	Lesional Expression of RhoA and RhoB following Traumatic Brain Injury in Humans. Journal of Neurotrauma, 2004, 21, 697-706.	1.7	59
36	Prolonged lesional expression of RhoA and RhoB following spinal cord injury. Journal of Comparative Neurology, 2005, 487, 166-175.	0.9	57

#	Article	IF	CITATIONS
37	Repulsive guidance molecule-A (RGM-A) inhibits leukocyte migration and mitigates inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6555-6560.	3.3	55
38	The Incidence and Management of Moderate to Severe Head Injury. Deutsches Ärzteblatt International, 2019, 116, 167-173.	0.6	51
39	Impact of Admission Imaging Findings on Neurological Outcomes in Acute Cervical Traumatic Spinal Cord Injury. Journal of Neurotrauma, 2018, 35, 1398-1406.	1.7	48
40	Enhanced axonal response of mitochondria to demyelination offers neuroprotection: implications for multiple sclerosis. Acta Neuropathologica, 2020, 140, 143-167.	3.9	48
41	Developing a data sharing community for spinal cord injury research. Experimental Neurology, 2017, 295, 135-143.	2.0	48
42	COX-3 the enzyme and the concept: steps towards highly specialized pathways and precision therapeutics?. Prostaglandins Leukotrienes and Essential Fatty Acids, 2003, 69, 339-343.	1.0	46
43	Determinants of Axon Growth, Plasticity, and Regeneration in the Context of Spinal Cord Injury. American Journal of Pathology, 2018, 188, 53-62.	1.9	45
44	The SClentinel study - prospective multicenter study to define the spinal cord injury-induced immune depression syndrome (SCI-IDS) - study protocol and interim feasibility data. BMC Neurology, 2013, 13, 168.	0.8	41
45	Spinal cord injury induction of lesional expression of profibrotic and angiogenic connective tissue growth factor confined to reactive astrocytes, invading fibroblasts and endothelial cells. Journal of Neurosurgery: Spine, 2005, 2, 319-326.	0.9	40
46	Evidence of Intrathecal Immunoglobulin Synthesis in Stroke. Archives of Neurology, 2012, 69, 714-7.	4.9	40
47	Expression of interleukin-16 by tumor-associated macrophages/activated microglia in high-grade astrocytic brain tumors. Archivum Immunologiae Et Therapiae Experimentalis, 2007, 55, 41-47.	1.0	39
48	Spinal cord injury–induced expression of the immune-regulatory chemokine interleukin-16 caused by activated microglia/macrophages and CD8+ cells. Journal of Neurosurgery: Spine, 2006, 4, 233-240.	0.9	36
49	Effect of Focal Cerebral Infarctions on Lesional RhoA and RhoB Expression. Archives of Neurology, 2003, 60, 1245-9.	4.9	35
50	Cyclooxygenases and Central Nervous System Inflammation. Archives of Neurology, 2003, 60, 630.	4.9	35
51	Lesional expression of a proinflammatory and antiangiogenic cytokine EMAP II confined to endothelium and microglia/macrophages during secondary damage following experimental traumatic brain injury. Journal of Neuroimmunology, 2003, 135, 1-9.	1.1	34
52	Lesional RhoA+ cell numbers are suppressed by anti-inflammatory, cyclooxygenase-inhibiting treatment following subacute spinal cord injury. Glia, 2004, 47, 377-386.	2.5	31
53	Spinal cord injury induces differential expression of the profibrotic semaphorin 7A in the developing and mature glial scar. Glia, 2010, 58, 1748-1756.	2.5	30
54	Prognostic value of early leukocyte fluctuations for recovery from traumatic spinal cord injury. Clinical and Translational Medicine, 2021, 11, e272.	1.7	30

JAN SCHWAB

#	Article	IF	CITATIONS
55	Current Practice of Methylprednisolone Administration for Acute Spinal Cord Injury in Germany. Spine, 2013, 38, E669-E677.	1.0	28
56	Serum Albumin Predicts Long-Term Neurological Outcomes After Acute Spinal Cord Injury. Neurorehabilitation and Neural Repair, 2018, 32, 7-17.	1.4	28
57	FAIR SCI Ahead: The Evolution of the Open Data Commons for Pre-Clinical Spinal Cord Injury Research. Journal of Neurotrauma, 2020, 37, 831-838.	1.7	27
58	Anti-Inflammatory Effects of IL-27 in Zymosan-Induced Peritonitis: Inhibition of Neutrophil Recruitment Partially Explained by Impaired Mobilization from Bone Marrow and Reduced Chemokine Levels. PLoS ONE, 2015, 10, e0137651.	1.1	24
59	Considerations and recommendations for selection and utilization of upper extremity clinical outcome assessments in human spinal cord injury trials. Spinal Cord, 2018, 56, 414-425.	0.9	24
60	Outcome heterogeneity and bias in acute experimental spinal cord injury. Neurology, 2019, 93, e40-e51.	1.5	24
61	Profiling age-related muscle weakness and wasting: neuromuscular junction transmission as a driver of age-related physical decline. GeroScience, 2021, 43, 1265-1281.	2.1	24
62	Natural Killer (NK) Cell Functionality after human Spinal Cord Injury (SCI): protocol of a prospective, longitudinal study. BMC Neurology, 2016, 16, 170.	0.8	23
63	Lower extremity outcome measures: considerations for clinical trials in spinal cord injury. Spinal Cord, 2018, 56, 628-642.	0.9	23
64	Spinal Cord Injury Induces Lesional Expression of the Proinflammatory and Antiangiogenic Cytokine EMAP II. Journal of Neurotrauma, 2003, 20, 1007-1015.	1.7	22
65	Injury-related dynamic myelin/oligodendrocyte axon-outgrowth inhibition in the central nervous system. Lancet, The, 2005, 365, 2055-2057.	6.3	19
66	Acute Spinal Cord Injury Is Associated With Prevalent Cardiometabolic Risk Factors. Archives of Physical Medicine and Rehabilitation, 2022, 103, 696-701.	0.5	19
67	SCISSOR—Spinal Cord Injury Study on Small molecule-derived Rho inhibition: a clinical study protocol. BMJ Open, 2016, 6, e010651.	0.8	17
68	Markedly Deranged Injury Site Metabolism and Impaired Functional Recovery in Acute Spinal Cord Injury Patients With Fever. Critical Care Medicine, 2018, 46, 1150-1157.	0.4	17
69	Raising awareness for spinal cord injury research. Lancet Neurology, The, 2018, 17, 581-582.	4.9	17
70	SCING—Spinal Cord Injury Neuroprotection with Glyburide: a pilot, open-label, multicentre, prospective evaluation of oral glyburide in patients with acute traumatic spinal cord injury in the USA. BMJ Open, 2019, 9, e031329.	0.8	14
71	Immune dysfunction after spinal cord injury – A review of autonomic and neuroendocrine mechanisms. Current Opinion in Pharmacology, 2022, 64, 102230.	1.7	13
72	Injury reactive myelin/oligodendrocyte-derived axon growth inhibition in the adult mammalian central nervous system. Brain Research Reviews, 2005, 49, 295-299.	9.1	12

#	Article	IF	CITATIONS
73	Challenges to Translation and the Hippocratic Oath by Premature Termination of Spinal Cord Stem Cell–Based Trials. JAMA Neurology, 2017, 74, 635.	4.5	11
74	Peripheral white blood cell responses as emerging biomarkers for patient stratification and prognosis in acute spinal cord injury. Current Opinion in Neurology, 2021, 34, 796-803.	1.8	11
75	Clinical decision-making on spinal cord injury-associated pneumonia: a nationwide survey in Germany. Spinal Cord, 2020, 58, 873-881.	0.9	10
76	Serum albumin as a predictor of neurological recovery after spinal cord injury: a replication study. Spinal Cord, 2021, 59, 282-290.	0.9	10
77	Thoracic VGluT2 ⁺ Spinal Interneurons Regulate Structural and Functional Plasticity of Sympathetic Networks after High-Level Spinal Cord Injury. Journal of Neuroscience, 2022, 42, 3659-3675.	1.7	9
78	Neuroprotection After Traumatic Brain Injury. JAMA Neurology, 2016, 73, 149.	4.5	8
79	Assessing Rat Forelimb and Hindlimb Motor Unit Connectivity as Objective and Robust Biomarkers of Spinal Motor Neuron Function. Scientific Reports, 2019, 9, 16699.	1.6	8
80	Spinal cord injury–induced expression of the antiangiogenic endostatin/collagen XVIII in areas of vascular remodelling. Journal of Neurosurgery: Spine, 2007, 7, 205-214.	0.9	6
81	Association of age with the timing of acute spine surgery–effects on neurological outcome after traumatic spinal cord injury. European Spine Journal, 2022, 31, 56-69.	1.0	6
82	The Effect of Early Infection on the Rate of Volitional Voiding after Spinal Cord Injury: A Potential Modifiable Risk Factor for Bladder Outcomes. Journal of Urology, 2022, 207, 137-143.	0.2	5
83	A critical reappraisal of corticospinal tract somatotopy and its role in traumatic cervical spinal cord syndromes. Journal of Neurosurgery: Spine, 2022, 36, 653-659.	0.9	5
84	Bladder Management With Chronic Indwelling Catheter is Associated with Elevated Mortality in Patients with Spinal Cord Injury. Urology, 2022, , .	0.5	5
85	Association of timing of gabapentinoid use with motor recovery after spinal cord injury. Neurology, 2020, 95, e3412-e3419.	1.5	4
86	Spinal Cord Injury Impairs Lung Immunity in Mice. Journal of Immunology, 2022, 209, 157-170.	0.4	4
87	From Cell Death to Neuronal Regeneration: Building a New Brain after Traumatic Brain Injury. Journal of Neuropathology and Experimental Neurology, 2004, 63, 180-181.	0.9	3
88	Enabling motor control in chronic spinal cord injury: found in translation. Brain, 2014, 137, 1277-1280.	3.7	2
89	Corroborating evidence by exploring sources of bias in observational spinal cord injury studies. Neurology, 2018, 91, 476-479.	1.5	2
90	Spinal infection with intraspinal abscess or empyema and acute myelopathy: comparative analysis of diagnostics, therapy, complications and outcome in primary care. European Journal of Trauma and Emergency Surgery, 0, , .	0.8	2

#	Article	IF	CITATIONS
91	Dynamic induction of the myelinâ€associated growth inhibitor Nogoâ€A in perilesional plasticity regions after human spinal cord injury. Brain Pathology, 2023, 33, .	2.1	2
92	SekundÃ r e Immundefizienz nach ZNS-Verletzung: Charakteristika, Pathophysiologie und klinische Bedeutung. E-Neuroforum, 2005, 11, 5-13.	0.2	1
93	Novel Neuroscience M.DPh.D. Programs in Germany: A Chance for Neurosurgical Research?. Neurosurgery, 2004, 55, 1232-1233.	0.6	0
94	SekundÃ ¤ e Immundefizienz (Immunparalyse) nach Rückenmarkverletzung. E-Neuroforum, 2010, 16, 208-217.	0.2	0
95	QuerschnittslÃ ¤ mung muss heilbar werden – das ambitionierte Ziel der Wings for Life Stiftung. Sports Orthopaedics and Traumatology, 2012, 28, 66-73.	0.1	0
96	Modifiable denominators of evolving post-stroke-autoimmunity. Journal of Neuroimmunology, 2016, 300, 57-58.	1.1	0
97	American Academy of Spinal Cord Injury Professionals ASCIP 2018 Educational Conference & Expo Stronger Together: Passion, Purpose and Possibilities in SCI/D. Journal of Spinal Cord Medicine, 2018, 41, 599-622.	0.7	0
98	Overcoming trivialization: The neuroimmune response after acute central nervous system injury. Journal of Neuroimmunology, 2019, 330, 28-30.	1.1	0