Jun-Hao Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/853800/publications.pdf

Version: 2024-02-01

23 6,744 16 20 papers citations h-index g-index

27 27 27 9388
all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Research, 2014, 42, D92-D97.	14.5	4,113
2	starBase: a database for exploring microRNA–mRNA interaction maps from Argonaute CLIP-Seq and Degradome-Seq data. Nucleic Acids Research, 2011, 39, D202-D209.	14.5	738
3	Single-cell methylomes identify neuronal subtypes and regulatory elements in mammalian cortex. Science, 2017, 357, 600-604.	12.6	445
4	ChIPBase: a database for decoding the transcriptional regulation of long non-coding RNA and microRNA genes from ChIP-Seq data. Nucleic Acids Research, 2013, 41, D177-D187.	14.5	293
5	deepBase v2.0: identification, expression, evolution and function of small RNAs, LncRNAs and circular RNAs from deep-sequencing data. Nucleic Acids Research, 2016, 44, D196-D202.	14.5	203
6	RMBase: a resource for decoding the landscape of RNA modifications from high-throughput sequencing data. Nucleic Acids Research, 2016, 44, D259-D265.	14.5	166
7	Single-Cell Sequencing of Brain Cell Transcriptomes and Epigenomes. Neuron, 2021, 109, 11-26.	8.1	135
8	tRF2Cancer: A web server to detect tRNA-derived small RNA fragments (tRFs) and their expression in multiple cancers. Nucleic Acids Research, 2016, 44, W185-W193.	14.5	113
9	Environmental enrichment increases transcriptional and epigenetic differentiation between mouse dorsal and ventral dentate gyrus. Nature Communications, 2018, 9, 298.	12.8	106
10	A unique role for DNA (hydroxy)methylation in epigenetic regulation of human inhibitory neurons. Science Advances, 2018, 4, eaau6190.	10.3	92
11	Inhibition of the JNK/MAPK signaling pathway by myogenesis-associated miRNAs is required for skeletal muscle development. Cell Death and Differentiation, 2018, 25, 1581-1597.	11.2	79
12	Discovery of Proteinââ,¬â€œlncRNA Interactions by Integrating Large-Scale CLIP-Seq and RNA-Seq Datasets. Frontiers in Bioengineering and Biotechnology, 2014, 2, 88.	4.1	73
13	A distinct set of long non-coding RNAs in childhood MLL-rearranged acute lymphoblastic leukemia: biology and epigenetic target. Human Molecular Genetics, 2014, 23, 3278-3288.	2.9	49
14	StarScan: a web server for scanning small RNA targets from degradome sequencing data. Nucleic Acids Research, 2015, 43, W480-W486.	14.5	36
15	MtiBase: a database for decoding microRNA target sites located within CDS and 5′UTR regions from CLIP-Seq and expression profile datasets. Database: the Journal of Biological Databases and Curation, 2015, 2015, bav102.	3.0	23
16	Evolution of regulatory signatures in primate cortical neurons at cell-type resolution. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28422-28432.	7.1	18
17	Cellular and genetic drivers of RNA editing variation in the human brain. Nature Communications, 2022, 13, .	12.8	18
18	Integrative analysis reveals clinical phenotypes and oncogenic potentials of long non-coding RNAs across 15 cancer types. Oncotarget, 2016, 7, 35044-35055.	1.8	17

#	Article	IF	CITATIONS
19	Dnmt3a knockout in excitatory neurons impairs postnatal synapse maturation and increases the repressive histone modification H3K27me3. ELife, 0, 11 , .	6.0	10
20	Genome-wide identification of microRNA targets reveals positive regulation of the Hippo pathway by miR-122 during liver development. Cell Death and Disease, 2021, 12, 1161.	6.3	7
21	Conservation and divergence of transcriptional coregulations between box C/D snoRNA and ribosomal protein genes inAscomycota. Rna, 2014, 20, 1376-1385.	3.5	6
22	Using the Power of Single-Nucleus Epigenomics to Map the Molecular Complexity of the Adult Brain. Biological Psychiatry, 2020, 87, S61-S62.	1.3	0
23	Genome-Wide Identification of MicroRNA Targets Reveals Positive Regulation of the Hippo Pathway by miR-122 During Liver Development. SSRN Electronic Journal, 0, , .	0.4	0