
Maria Virtudes Morales

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8537990/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tunable selectivity of Ni catalysts in the hydrogenation reaction of 5-hydroxymethylfurfural in aqueous media: Role of the carbon supports. Carbon, 2021, 182, 265-275.	10.3	28
2	Cu and Pd nanoparticles supported on a graphitic carbon material as bifunctional HER/ORR electrocatalysts. Catalysis Today, 2020, 357, 279-290.	4.4	31
3	Taking advantage of sulfur impurities present in commercial carbon nanofibers to generate selective palladium catalysts. Carbon, 2020, 157, 120-129.	10.3	5
4	Continuous Catalytic Condensation of Ethanol into 1-Butanol: The Role of Metallic Oxides (M = MgO,) Tj ETQqO 59, 16626-16636.	0 0 rgBT /(3.7	Overlock 10 T 12
5	Cu-based N-doped/undoped graphene nanocomposites as electrocatalysts for the oxygen reduction. Journal of Applied Electrochemistry, 2019, 49, 693-703.	2.9	3
6	Comparative study of Cu, Ag and Ag-Cu catalysts over graphite in the ethanol dehydrogenation reaction: Catalytic activity, deactivation and regeneration. Applied Catalysis A: General, 2019, 576, 54-64.	4.3	28
7	Improved Catalytic Technology for Waste Plastic Processing: Toward Novel Remediation and Emission Control Measures. ACS Sustainable Chemistry and Engineering, 2019, 7, 129-133.	6.7	7
8	Novel reactivation allows effective reuse of Nafion® super-acid nano-catalyst. Applied Catalysis A: General, 2019, 569, 134-140.	4.3	5
9	Difference in the deactivation of Au catalysts during ethanol transformation when supported on ZnO and on TiO ₂ . RSC Advances, 2018, 8, 7473-7485.	3.6	8
10	Continuous Gasâ€Phase Condensation of Bioethanol to 1â€Butanol over Bifunctional Pd/Mg and Pd/Mg–Carbon Catalysts. ChemSusChem, 2018, 11, 3502-3511.	6.8	14
11	Advanced oxidation process for coke removal: A systematic study of hydrogen peroxide and OH-derived-Fenton radicals of a fouled zeolite. Applied Catalysis A: General, 2018, 562, 215-222.	4.3	20
12	CuPd Bimetallic Nanoparticles Supported on Magnesium Oxide as an Active and Stable Catalyst for the Reduction of 4-Nitrophenol to 4-Aminophenol. International Journal of Green Technology, 2018, 3, 51-62.	0.7	11
13	Acid clay minerals as eco-friendly and cheap catalysts for the synthesis of Î ² -amino ketones by Mannich reaction. Applied Clay Science, 2017, 143, 250-257.	5.2	14
14	Development of highly efficient Cu versus Pd catalysts supported on graphitic carbon materials for the reduction of 4-nitrophenol to 4-aminophenol at room temperature. Carbon, 2017, 111, 150-161.	10.3	54
15	Bioethanol dehydrogenation over copper supported on functionalized graphene materials and a high surface area graphite. Carbon, 2016, 102, 426-436.	10.3	40
16	Role of Exposed Surfaces on Zinc Oxide Nanostructures in the Catalytic Ethanol Transformation. ChemSusChem, 2015, 8, 2223-2230.	6.8	17
17	High nitrogen doped graphenes and their applicability as basic catalysts. Diamond and Related Materials, 2014, 44, 26-32.	3.9	27
18	Bioethanol Transformations Over Active Surface Sites Generated on Carbon Nanotubes or Carbon Nanofibers Materials. Open Catalysis Journal, 2014, 7, 1-7.	0.9	8