Clare Strode

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8537892/publications.pdf

Version: 2024-02-01

361296 526166 2,414 27 20 27 h-index citations g-index papers 29 29 29 2243 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Genomic analysis of detoxification genes in the mosquito Aedes aegypti. Insect Biochemistry and Molecular Biology, 2008, 38, 113-123.	1.2	289
2	The Anopheles gambiae detoxification chip: A highly specific microarray to study metabolic-based insecticide resistance in malaria vectors. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4080-4084.	3.3	282
3	Expression of the cytochrome P450s, CYP6P3 and CYP6M2 are significantly elevated in multiple pyrethroid resistant populations of Anopheles gambiae s.s. from Southern Benin and Nigeria. BMC Genomics, 2008, 9, 538.	1.2	256
4	Cross-induction of detoxification genes by environmental xenobiotics and insecticides in the mosquito Aedes aegypti: Impact on larval tolerance to chemical insecticides. Insect Biochemistry and Molecular Biology, 2008, 38, 540-551.	1.2	246
5	The Impact of Pyrethroid Resistance on the Efficacy of Insecticide-Treated Bed Nets against African Anopheline Mosquitoes: Systematic Review and Meta-Analysis. PLoS Medicine, 2014, 11, e1001619.	3.9	200
6	Exploring the molecular basis of insecticide resistance in the dengue vector Aedes aegypti: a case study in Martinique Island (French West Indies). BMC Genomics, 2009, 10, 494.	1.2	163
7	Evidence of multiple pyrethroid resistance mechanisms in the malaria vector Anopheles gambiae sensu stricto from Nigeria. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2009, 103, 1139-1145.	0.7	128
8	Impact of glyphosate and benzo[a]pyrene on the tolerance of mosquito larvae to chemical insecticides. Role of detoxification genes in response to xenobioticsâ ⁻ †. Aquatic Toxicology, 2009, 93, 61-69.	1.9	109
9	Can piperonyl butoxide enhance the efficacy of pyrethroids against pyrethroidâ€resistant <i>Aedes aegypti</i> ?. Tropical Medicine and International Health, 2011, 16, 492-500.	1.0	88
10	Molecular mechanisms associated with increased tolerance to the neonicotinoid insecticide imidacloprid in the dengue vector Aedes aegypti. Aquatic Toxicology, 2013, 126, 326-337.	1.9	78
11	Quantitative Trait Loci Mapping of Genome Regions Controlling Permethrin Resistance in the Mosquito Aedes aegypti. Genetics, 2008, 180, 1137-1152.	1.2	75
12	Transcription of detoxification genes after permethrin selection in the mosquito <i>Aedes aegypti</i> Insect Molecular Biology, 2012, 21, 61-77.	1.0	75
13	Deltamethrin Resistance Mechanisms in Aedes aegypti Populations from Three French Overseas Territories Worldwide. PLoS Neglected Tropical Diseases, 2015, 9, e0004226.	1.3	71
14	Differential expression of the detoxification genes in the different life stages of the malaria vector Anopheles gambiae. Insect Molecular Biology, 2006, 15, 523-530.	1.0	63
15	Underpinning Sustainable Vector Control through Informed Insecticide Resistance Management. PLoS ONE, 2014, 9, e99822.	1.1	50
16	Differential transcription profiles in <i><scp>A</scp>edes aegypti</i> detoxification genes after temephos selection. Insect Molecular Biology, 2014, 23, 199-215.	1.0	46
17	A Point Mutation V419L in the Sodium Channel Gene from Natural Populations of Aedes aegypti Is Involved in Resistance to λ-Cyhalothrin in Colombia. Insects, 2018, 9, 23.	1.0	42
18	Expression Profile of Genes during Resistance Reversal in a Temephos Selected Strain of the Dengue Vector, Aedes aegypti. PLoS ONE, 2012, 7, e39439.	1.1	40

#	Article	IF	Citations
19	Climatic and socio-economic factors supporting the co-circulation of dengue, Zika and chikungunya in three different ecosystems in Colombia. PLoS Neglected Tropical Diseases, 2021, 15, e0009259.	1.3	28
20	Microarray analysis of a pyrethroid resistant African malaria vector, Anopheles funestus, from southern Africa. Pesticide Biochemistry and Physiology, 2011, 99, 140-147.	1.6	23
21	Discovery of a single male Aedes aegypti (L.) in Merseyside, England. Parasites and Vectors, 2017, 10, 309.	1.0	18
22	The challenge of invasive mosquito vectors in the U.K. during 2016–2018: a summary of the surveillance and control of Aedes albopictus. Medical and Veterinary Entomology, 2019, 33, 443-452.	0.7	17
23	AnoBase: a genetic and biological database of anophelines. Insect Molecular Biology, 2005, 14, 591-597.	1.0	9
24	Identifying permethrin resistance loci in malaria vectors by genetic mapping. Parasitology, 2013, 140, 1468-1477.	0.7	9
25	Working towards a Co-Ordinated Approach to Invasive Mosquito Detection, Response and Control in the UK. International Journal of Environmental Research and Public Health, 2020, 17, 5166.	1.2	3
26	Expansive and Diverse Phenotypic Landscape of Field <i>Aedes aegypti</i> (Diptera: Culicidae) Larvae with Differential Susceptibility to Temephos: Beyond Metabolic Detoxification. Journal of Medical Entomology, 2022, 59, 192-212.	0.9	3
27	A potential global surveillance tool for effective, low-cost sampling of invasive Aedes mosquito eggs from tyres using adhesive tape. Parasites and Vectors, 2020, 13, 91.	1.0	2