
Fernanda Albana Marchesini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8537597/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis design of Cu/Al2O3 catalysts to decrease copper leaching in the catalytic wet peroxide oxidation of phenol. Journal of Hazardous Materials Letters, 2022, 3, 100059.	2.0	0
2	Nitrate reduction by electrochemical processes using copper electrode: evaluating operational parameters aiming low nitrite formation. Water Science and Technology, 2021, 84, 200-215.	1.2	5
3	Electrochemical nitrate reduction of brines: Improving selectivity to N2 by the use of Pd/activated carbon fiber catalyst. Chemosphere, 2021, 279, 130832.	4.2	15
4	Pd and Pd,In nanoparticles supported on polymer fibres as catalysts for the nitrate and nitrite reduction in aqueous media. Journal of Environmental Chemical Engineering, 2020, 8, 103651.	3.3	15
5	Use of a two-step process to denitrification of synthetic brines: electroreduction in a dual-chamber cell and catalytic reduction. Environmental Science and Pollution Research, 2020, 27, 1956-1968.	2.7	6
6	Superficial properties of activated carbon fiber catalysts produced by green synthesis and their application in water purification. Environmental Science and Pollution Research, 2020, 27, 40405-40420.	2.7	8
7	Mineralization of formic acid from catalytic nitrate reduction effluent by UV-based and electrochemical processes. Journal of Environmental Chemical Engineering, 2020, 8, 104127.	3.3	6
8	Comparison of different electrode materials for the nitrate electrocatalytic reduction in a dual-chamber cell. Journal of Environmental Chemical Engineering, 2020, 8, 104120.	3.3	15
9	Use of copper plate electrode and Pd catalyst to the nitrate reduction in an electrochemical dual-chamber cell. Journal of Water Process Engineering, 2020, 35, 101189.	2.6	13
10	Green Synthesis of a Cu/SiO2 Catalyst for Efficient H2-SCR of NO. Applied Sciences (Switzerland), 2019, 9, 4075.	1.3	16
11	Cu(5%)/Al2O3 catalytic performance on the phenol wet oxidation with H2O2: Influence of the calcination temperature. Journal of Environmental Chemical Engineering, 2019, 7, 103201.	3.3	19
12	PdIn Catalysts in a Continuous Fixed Bed Reactor for the Nitrate Removal from Groundwater. International Journal of Chemical Reactor Engineering, 2019, 17, .	0.6	6
13	Effect of operational parameters and Pd/In catalyst in the reduction of nitrate using copper electrode. Environmental Technology (United Kingdom), 2018, 39, 2835-2847.	1.2	11
14	Improving selectivity to dinitrogen using Palladium-Indium coated on activated carbon fibers: Preparation, characterization and application in water-phase nitrate reduction using formic acid as an alternative reductant source. Journal of Environmental Chemical Engineering, 2018, 6, 4764-4772.	3.3	11
15	Nitrate Reduction of Brines from Water Desalination Plants Employing a Low Metallic Charge Pd, In Catalyst and Formic Acid as Reducing Agent. Catalysis Letters, 2018, 148, 2572-2584.	1.4	13
16	Pd and In addition onto Au nanoparticles supported on TiO2 asÂa catalytic formulation for NO3 â^' reduction in water. Reaction Kinetics, Mechanisms and Catalysis, 2017, 120, 39-54.	0.8	6
17	Controlled deposition of Pd and In on carbon fibers by sequential electroless plating for the catalytic reduction of nitrate in water. Catalysis Communications, 2016, 78, 59-63.	1.6	28
18	Controlled Pd deposition on fibers by electroless plating. The effects of the support on the reduction of nitrite in water. Catalysis Today, 2013, 212, 16-22.	2.2	9

#	Article	IF	CITATIONS
19	Synthesis of Pd/Al2O3 coating onto a cordierite monolith and its application to nitrite reduction in water. Catalysis Communications, 2013, 34, 26-29.	1.6	11
20	Study of the interactions of Pd,In with SiO2 and Al2O3 mixed supports as catalysts for the hydrogenation of nitrates in water. Catalysis Communications, 2012, 21, 9-13.	1.6	31
21	Evaluation of Pdâ~In Supported Catalysts for Water Nitrate Abatement in a Fixed-Bed Continuous Reactor. Industrial & Engineering Chemistry Research, 2011, 50, 1911-1920.	1.8	20
22	Controlled Pd deposition on carbon fibers by electroless plating for the reduction of nitrite in water. Catalysis Communications, 2011, 16, 189-193.	1.6	17
23	Catalytic reduction of nitrate in water: Promoted palladium catalysts supported in resin. Applied Catalysis A: General, 2010, 372, 40-47.	2.2	52
24	Pt,In and Pd,In catalysts for the hydrogenation of nitrates and nitrites in water. FTIR characterization and reaction studies. Chemical Engineering Journal, 2010, 159, 203-211.	6.6	55
25	Spectroscopic and catalytic characterization of Pd–In and Pt–In supported on Al2O3 and SiO2, active catalysts for nitrate hydrogenation. Applied Catalysis A: General, 2008, 348, 60-70.	2.2	90
26	Nitrate hydrogenation over Pt,In/Al2O3 and Pt,In/SiO2. Effect of aqueous media and catalyst surface properties upon the catalytic activity. Catalysis Communications, 2008, 9, 1021-1026.	1.6	62
27	Nitrate hydrogenation on Pt,In/Al2O3: EXAFS and XANES characterization of fresh and used catalysts. Catalysis Communications, 2008, 10, 355-358.	1.6	2