Hongbin Zou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/853757/publications.pdf

Version: 2024-02-01

		566801	610482
31	597	15	24
papers	citations	h-index	24 g-index
33	33	33	736
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	"One-Pot―Multicomponent Approach to Indolizines and Pyrido[1,2- <i>a</i>]indoles. Organic Letters, 2011, 13, 2792-2794.	2.4	73
2	Scaffold Tailoring by a Newly Detected Pictet–Spenglerase Activity of Strictosidine Synthase: From the Common Tryptoline Skeleton to the Rare Piperazino-indole Framework. Journal of the American Chemical Society, 2012, 134, 1498-1500.	6.6	57
3	Functionalized heterocyclic scaffolds derived from Morita–Baylis–Hillman Acetates. Chemical Communications, 2013, 49, 7738.	2.2	44
4	Chameleon-like Behavior of the Directing Group in the Rh(III)-Catalyzed Regioselective C–H Amidation of Indole: An Experimental and Computational Study. ACS Catalysis, 2019, 9, 10233-10244.	5 . 5	40
5	Synthesis and biological evaluation of 2-indolinone derivatives as potential antitumor agents. European Journal of Medicinal Chemistry, 2011, 46, 5970-5977.	2.6	31
6	Stereocomplementary Chemoenzymatic Pictet–Spengler Reactions for Formation of Rare Azepino-indole Frameworks: Discovery of Antimalarial Compounds. ACS Catalysis, 2019, 9, 7443-7448.	5 . 5	31
7	A facile approach to polysubstituted pyrazoles from hydrazonyl chlorides and vinyl azides. Tetrahedron, 2011, 67, 4887-4891.	1.0	29
8	Versatile Regioselective Deuteration of Indoles via Transition-Metal-Catalyzed H/D Exchange. ACS Catalysis, 2020, 10, 7486-7494.	5 . 5	26
9	Cascade regioselective synthesis of pyrazoles from nitroallylic acetates and N-tosyl hydrazine. Tetrahedron, 2014, 70, 795-799.	1.0	24
10	Strictosidine Synthase Triggered Enantioselective Synthesis of N-Substituted (<i>S</i>)-3,14,18,19-Tetrahydroangustines as Novel Topoisomerase I Inhibitors. ACS Chemical Biology, 2017, 12, 3086-3092.	1.6	22
11	Improved Expression of His ₆ â€Tagged Strictosidine Synthase cDNA for Chemoâ€Enzymatic Alkaloid Diversification. Chemistry and Biodiversity, 2010, 7, 860-870.	1.0	20
12	One-pot chemoselective domino condensation to form a fused pyrrolo–pyrazino–indolizine framework: discovery of novel AIE molecules. Organic Chemistry Frontiers, 2020, 7, 1218-1223.	2.3	18
13	"One-pot―cascade approach to 5,6-dihydroindolizines and indolizines from pyrrole-2-carbaldehydes and nitroethylenes. Tetrahedron, 2017, 73, 3181-3187.	1.0	16
14	Rhodium(<scp>iii</scp>)-catalyzed cascade reactions of benzoic acids with dioxazolones: discovery of 2,5-substituted benzoxazinones as AIE molecules. Chemical Communications, 2019, 55, 11203-11206.	2.2	16
15	Rhodium(III)-Catalyzed Regioselective C(sp ²)â€"H Functionalization of 7-Arylpyrazolo[1,5- <i>a</i>]pyrimidines with Dioxazolones as Amidating Agents. Organic Letters, 2019, 21, 5933-5937.	2.4	16
16	Enantioselective Reduction of $\hat{l}\pm,\hat{l}^2$ -Unsaturated Ketones and Aryl Ketones by Perakine Reductase. Organic Letters, 2019, 21, 4411-4414.	2.4	16
17	Cascade reaction for 3-pyrrolines and pyrroles from nitroallylic acetates and N-mesyl 2-aminoethanones. Tetrahedron, 2013, 69, 10558-10564.	1.0	14
18	Generation of insulin-producing cells from rat mesenchymal stem cells using an aminopyrrole derivative XW4.4. Chemico-Biological Interactions, 2014, 208, 1-7.	1.7	14

#	Article	IF	CITATIONS
19	Temperature-modulated selective C(sp ³)â€"H or C(sp ²)â€"H arylation through palladium catalysis. Chemical Science, 2020, 11, 11461-11467.	3.7	14
20	Functionalized N-containing heterocyclic scaffolds derived from N-substituted pyrroles via inter- and intramolecular annulations. Tetrahedron, 2018, 74, 6088-6094.	1.0	13
21	Methanol facilitated synthesis of 7-methoxy-2-thioxo-2,3-dihydro-1H-1,3-diazepin-4(7H)-ones from nitroallylic acetates and thiourea. Tetrahedron, 2014, 70, 7454-7457.	1.0	12
22	Copper(<scp>i</scp>)-catalyzed benzylation of triazolopyridine through direct C–H functionalization. Organic and Biomolecular Chemistry, 2019, 17, 7455-7460.	1.5	12
23	Benign synthesis of unsymmetrical arylurea derivatives using 3-substituted dioxazolones as isocyanate surrogates. Green Chemistry Letters and Reviews, 2020, 13, 246-257.	2.1	10
24	Waterâ€Promoted Synthesis of Azepino[3,4,5â€ <i>cd</i>]indole Analogues <i>via</i> Pictetâ€Spengler Reaction. ChemistrySelect, 2020, 5, 4619-4622.	0.7	8
25	Acid- and Base-Switched Palladium-Catalyzed γ-C(sp ³)–H Alkylation and Alkenylation of Neopentylamine. Organic Letters, 2021, 23, 3466-3471.	2.4	6
26	C(sp ³)â€"H oxygenation <i>via</i> alkoxypalladium(<scp>ii</scp>) species: an update for the mechanism. Chemical Science, 2022, 13, 1298-1306.	3.7	5
27	Direct Transitionâ€Metal Free Benzene Câ^'H Functionalization by Intramolecular Nonâ€Nitroarene Nucleophilic Aromatic Substitution of Hydrogen to Diverse AlEgens. ChemSusChem, 2021, 14, 3208-3218.	3.6	4
28	Privileged Biorenewable Secologaninâ€Based Diversityâ€Oriented Synthesis for Pseudoâ€Natural Alkaloids: Uncovering Novel Neuroprotective and Antimalarial Frameworks. ChemSusChem, 2021, 14, 5320-5327.	3.6	3
29	î²-Methyltryptamine Provoking the Crucial Role of Strictosidine Synthase Tyr151-OH for Its Stereoselective Pictetâ°'Spengler Reactions to Tryptoline-type Alkaloids. ACS Chemical Biology, 2022, 17, 187-197.	1.6	3
30	Discovery of 3-Cinnamamido-N-Substituted Benzamides as Potential Antimalarial Agents. Medicinal Chemistry, 2021, 17, 1207-1218.	0.7	0
31	Design, Synthesis and Antitumor Assessment of Phenylureas Bearing 5-Fluoroindolin-2-one Moiety. Medicinal Chemistry, 2020, 16, 958-968.	0.7	0