Stefan Lossow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8537507/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Drift-corrected trends and periodic variations in MIPAS IMK/IAA ozone measurements. Atmospheric Chemistry and Physics, 2014, 14, 2571-2589.	4.9	81
2	Descent from the polar mesosphere and anomalously high stratopause observed in 8 years of water vapor and temperature satellite observations by the Odin Subâ€Millimeter Radiometer. Journal of Geophysical Research, 2010, 115, .	3.3	67
3	Harmonized dataset of ozone profiles from satellite limb and occultation measurements. Earth System Science Data, 2013, 5, 349-363.	9.9	52
4	Sulfur dioxide (SO ₂) from MIPAS in the upper troposphere and lower stratosphere 2002–2012. Atmospheric Chemistry and Physics, 2015, 15, 7017-7037.	4.9	38
5	Modelling the descent of nitric oxide during the elevated stratopause event of January 2013. Journal of Atmospheric and Solar-Terrestrial Physics, 2017, 155, 50-61.	1.6	31
6	The millennium water vapour drop in chemistry–climate model simulations. Atmospheric Chemistry and Physics, 2016, 16, 8125-8140.	4.9	27
7	The role of methane in projections of 21st century stratospheric water vapour. Atmospheric Chemistry and Physics, 2016, 16, 13067-13080.	4.9	26
8	The SPARC water vapour assessment II: comparison of annual, semi-annual and quasi-biennial variations in stratospheric and lower mesospheric water vapour observed from satellites. Atmospheric Measurement Techniques, 2017, 10, 1111-1137.	3.1	24
9	Validation of MIPAS IMK/IAA V5R_O3_224 ozone profiles. Atmospheric Measurement Techniques, 2014, 7, 3971-3987.	3.1	24
10	Seasonal and interannual variations in HCN amounts in the upper troposphere and lower stratosphere observed by MIPAS. Atmospheric Chemistry and Physics, 2015, 15, 563-582.	4.9	21
11	Methane and nitrous oxide retrievals from MIPAS-ENVISAT. Atmospheric Measurement Techniques, 2015, 8, 4657-4670.	3.1	20
12	Critical parameters for the retrieval of mesospheric water vapour and temperature from Odin/SMR limb measurements at 557GHz. Advances in Space Research, 2007, 40, 835-845.	2.6	19
13	Validation of MIPAS IMK/IAA methane profiles. Atmospheric Measurement Techniques, 2015, 8, 5251-5261.	3.1	18
14	Validation of revised methane and nitrous oxide profiles from MIPAS–ENVISAT. Atmospheric Measurement Techniques, 2016, 9, 765-779.	3.1	18
15	Is there a solar signal in lower stratospheric water vapour?. Atmospheric Chemistry and Physics, 2015, 15, 9851-9863.	4.9	17
16	Bright polar mesospheric clouds formed by main engine exhaust from the space shuttle's final launch. Journal of Geophysical Research, 2012, 117, .	3.3	16
17	MIPAS IMK/IAA CFC-11 (CCl ₃ F) and CFC-12 (CCl ₂ F ₂) measurements: accuracy, precision and long-term stability. Atmospheric Measurement Techniques, 2016, 9, 3355-3389.	3.1	15
18	Influence of the Antarctic ozone hole on the polar mesopause region as simulated by the Canadian Middle Atmosphere Model. Journal of Atmospheric and Solar-Terrestrial Physics, 2012, 74, 111-123.	1.6	14

STEFAN LOSSOW

#	Article	IF	CITATIONS
19	Trend differences in lower stratospheric water vapour between Boulder and the zonal mean and their role in understanding fundamental observational discrepancies. Atmospheric Chemistry and Physics, 2018, 18, 8331-8351.	4.9	14
20	Simulation of the isotopic composition of stratospheric water vapour $\hat{a} \in$ Part 1: Description and evaluation of the EMAC model. Atmospheric Chemistry and Physics, 2015, 15, 5537-5555.	4.9	13
21	Simulation of the isotopic composition of stratospheric water vapour – Part 2: Investigation of HDO / H ₂ O variations. Atmospheric Chemistry and Physics, 2015, 15, 7003-7015.	4.9	13
22	The SPARC water vapor assessment II: intercomparison of satellite and ground-based microwave measurements. Atmospheric Chemistry and Physics, 2017, 17, 14543-14558.	4.9	13
23	The SPARC water vapour assessment II: profile-to-profile comparisons of stratospheric and lower mesospheric water vapour data sets obtained from satellites. Atmospheric Measurement Techniques, 2019, 12, 2693-2732.	3.1	13
24	UTLS water vapour from SCIAMACHY limb measurementsV3.01 (2002–2012). Atmospheric Measurement Techniques, 2016, 9, 133-158.	3.1	12
25	The SPARC water vapour assessment II: comparison of stratospheric and lower mesospheric water vapour time series observed from satellites. Atmospheric Measurement Techniques, 2018, 11, 4435-4463.	3.1	12
26	What caused the exceptional mid-latitudinal Noctilucent Cloud event in July 2009?. Journal of Atmospheric and Solar-Terrestrial Physics, 2011, 73, 2125-2131.	1.6	11
27	Sensitivity of polar stratospheric cloud formation to changes in water vapour and temperature. Atmospheric Chemistry and Physics, 2016, 16, 101-121.	4.9	11
28	Space shuttle exhaust plumes in the lower thermosphere: Advective transport and diffusive spreading. Journal of Atmospheric and Solar-Terrestrial Physics, 2014, 108, 50-60.	1.6	10
29	Assessment of the interannual variability and influence of the QBO and upwelling on tracer–tracer distributions of N ₂ O and O ₃ in the tropical lower stratosphere. Atmospheric Chemistry and Physics, 2013, 13, 3619-3641.	4.9	9
30	On the improved stability of the version 7 MIPAS ozone record. Atmospheric Measurement Techniques, 2018, 11, 4693-4705.	3.1	7
31	Stable Water Isotopologues in the Stratosphere Retrieved from Odin/SMR Measurements. Remote Sensing, 2018, 10, 166.	4.0	4
32	The SPARC Water Vapor Assessment II: assessment of satellite measurements of upper tropospheric humidity. Atmospheric Measurement Techniques, 2022, 15, 3377-3400.	3.1	4
33	An "island―in the stratosphere – on the enhanced annual variation of water vapour in the middle and upper stratosphere in the southern tropics and subtropics. Atmospheric Chemistry and Physics, 2017, 17, 11521-11539.	4.9	3
34	The SPARC water vapour assessmentÂll: profile-to-profile and climatological comparisons of stratospheric <i>Î`</i> D(H ₂ O) observations from satellite. Atmospheric Chemistry and Physics, 2019, 19, 2497-2526.	4.9	1
35	A reassessment of the discrepancies in the annual variation of <i>δ</i> D-H ₂ O in the tropical lower stratosphere between the MIPAS and ACE-FTS satellite data sets. Atmospheric Measurement Techniques, 2020, 13, 287-308.	3.1	1