Karen Spadari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8537268/publications.pdf

Version: 2024-02-01

840728 752679 21 504 11 20 citations h-index g-index papers 21 21 21 692 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Extracellular Vesicles From Sporothrix brasiliensis Yeast Cells Increases Fungicidal Activity in Macrophages. Mycopathologia, 2021, 186, 807-818.	3.1	2
2	Intracellular PRRs Activation in Targeting the Immune Response Against Fungal Infections. Frontiers in Cellular and Infection Microbiology, 2020, 10, 591970.	3.9	12
3	High Glucose Environments Interfere with Bone Marrow-Derived Macrophage Inflammatory Mediator Release, the TLR4 Pathway and Glucose Metabolism. Scientific Reports, 2019, 9, 11447.	3.3	33
4	An immunoproteomic approach revealing peptides from Sporothrix brasiliensis that induce a cellular immune response in subcutaneous sporotrichosis. Scientific Reports, 2018, 8, 4192.	3.3	45
5	Therapeutic treatment with scFv–PLGA nanoparticles decreases pulmonary fungal load in a murine model of paracoccidioidomycosis. Microbes and Infection, 2018, 20, 48-56.	1.9	14
6	Secreted aspartyl proteinase (PbSap) contributes to the virulence of Paracoccidioides brasiliensis infection. PLoS Neglected Tropical Diseases, 2018, 12, e0006806.	3.0	9
7	Extracellular Vesicles From Sporothrix brasiliensis Are an Important Virulence Factor That Induce an Increase in Fungal Burden in Experimental Sporotrichosis. Frontiers in Microbiology, 2018, 9, 2286.	3.5	84
8	Notch Signaling is Required for Dendritic Cell Maturation and T Cell Expansion in Paracoccidioidomycosis. Mycopathologia, 2018, 183, 739-749.	3.1	6
9	TLR3 Is a Negative Regulator of Immune Responses Against Paracoccidioides brasiliensis. Frontiers in Cellular and Infection Microbiology, 2018, 8, 426.	3.9	10
10	Alternative Host Models for Testing Anti-Protozoal or Antifungal Compounds and Fungal Infection. Current Topics in Medicinal Chemistry, 2018, 18, 300-311.	2.1	1
11	Highlights of the São Paulo ISEV workshop on extracellular vesicles in crossâ€kingdom communication. Journal of Extracellular Vesicles, 2017, 6, 1407213.	12.2	38
12	Infection with Paracoccidioides brasiliensis induces B-1 cell migration and activation of regulatory T cells. Microbes and Infection, 2016, 18, 798-803.	1.9	8
13	MOLECULAR IDENTIFICATION AND ANTIMICROBIAL RESISTANCE PATTERN OF SEVEN CLINICAL ISOLATES OF Nocardia spp. IN BRAZIL. Revista Do Instituto De Medicina Tropical De Sao Paulo, 2015, 57, 251-256.	1.1	8
14	scFv from Antibody That Mimics gp43 Modulates the Cellular and Humoral Immune Responses during Experimental Paracoccidioidomycosis. PLoS ONE, 2015, 10, e0129401.	2.5	6
15	Recognition of enteroinvasive Escherichia coli and Shigella flexneri by dendritic cells: distinct dendritic cell activation states. Memorias Do Instituto Oswaldo Cruz, 2012, 107, 138-141.	1.6	9
16	Dendritic Cells Transfected with scFv from Mab 7.B12 Mimicking Original Antigen gp43 Induces Protection against Experimental Paracoccidioidomycosis. PLoS ONE, 2011, 6, e15935.	2.5	9
17	Paracoccidioides brasilinsis-Induced Migration of Dendritic Cells and Subsequent T-Cell Activation in the Lung-Draining Lymph Nodes. PLoS ONE, 2011, 6, e19690.	2.5	18
18	Interaction between <i>Paracoccidioides brasiliensis</i> Interleukinâ€10 Production and Tollâ€Like Receptorâ€"2 Expression: Possible Mechanisms of Susceptibility. Journal of Infectious Diseases, 2007, 196, 1108-1115.	4.0	65

KAREN SPADARI

#	Article	IF	CITATIONS
19	Immunization of susceptible mice with gp43-pulsed dendritic cells induce an increase of pulmonary Paracoccidioidomycosis. Immunology Letters, 2006, 103, 121-126.	2.5	24
20	Cytokines and lymphocyte proliferation in patients with different clinical forms of chromoblastomycosis. Microbes and Infection, 2005, 7, 708-713.	1.9	74
21	Down-regulation of dendritic cell activation induced by Paracoccidioides brasiliensis. Immunology Letters, 2004, 94, 107-114.	2.5	29