Chenglong Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8536604/publications.pdf

Version: 2024-02-01

50 1,431 21 37
papers citations h-index g-index

52 52 52 1997 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Plasmonic Polycrystals within Microbowl Arrays. Advanced Optical Materials, 2022, 10, .	7.3	4
2	Detection and Aggregation of Listeria Monocytogenes Using Polyclonal Antibody Gold-Coated Magnetic Nanoshells Surface-Enhanced Raman Spectroscopy Substrates. Frontiers in Nanotechnology, 2021, 3, .	4.8	5
3	Opto-Thermomechanical Nanoprinting under ambient conditions. , 2021, , .		O
4	Biomimetic apposition compound eye fabricated using microfluidic-assisted 3D printing. Nature Communications, 2021, 12, 6458.	12.8	51
5	Acoustofluidic Scanning Nanoscope with High Resolution and Large Field of View. ACS Nano, 2020, 14, 8624-8633.	14.6	16
6	Additive Opto-Thermomechanical Nanoprinting and Nanorepairing under Ambient Conditions. Nano Letters, 2020, 20, 5057-5064.	9.1	22
7	Laser Additive Manufacturing through Opto-thermo- mechanical Printing under Ambient Conditions. , 2020, , .		O
8	Laser additive manufacturing at the nanoscales under ambient conditions. , 2020, , .		0
9	Active and Ultrasensitive Chemical and Biosensing through Optothermally Generated Microbubble. , 2020, , .		O
10	Opto-Thermomechanical Nanoprinting and Nanorepairing. , 2020, , .		0
11	Laser additive nano-manufacturing under ambient conditions. Nanoscale, 2019, 11, 16187-16199.	5. 6	16
12	Colour compound lenses for a portable fluorescence microscope. Light: Science and Applications, 2019, 8, 75.	16.6	61
13	Optimization and Structural Stability of Gold Nanoparticle–Antibody Bioconjugates. ACS Omega, 2019, 4, 15269-15279.	3.5	68
14	Optothermal microbubble assisted manufacturing of nanogap-rich structures for active chemical sensing. Nanoscale, 2019, 11, 20589-20597.	5.6	24
15	Print metallic nanoparticles on a fiber probe for 1064-nm surface-enhanced Raman scattering. Optics Letters, 2019, 44, 4997.	3.3	14
16	Optical manipulation with an optothermal surface bubble for ultrasensitive sensing. , 2019, , .		0
17	Nondestructive Approach for Additive Nanomanufacturing of Metallic Nanostructures in the Air. ACS Omega, 2018, 3, 1213-1219.	3.5	15
18	Estimation of thermocapillary force during laser trapping of confined microbubbles in a liquid. Optical Engineering, 2018, 57, 1.	1.0	3

#	Article	IF	Citations
19	Generation of a ring-shaped focusing spot with precisely controllable position and diameter. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 987.	2.1	1
20	Fabricated nanogap-rich plasmonic nanostructures through an optothermal surface bubble in a droplet. Optics Letters, 2018, 43, 334.	3.3	16
21	Dynamics of thermally generated microbubbles. , 2018, , .		1
22	An optothermally generated surface bubble and its applications. Nanoscale, 2017, 9, 6622-6631.	5.6	70
23	Optical trapping of metallic nanoparticles using microbubbles. , 2017, , .		1
24	Review of optical detection of single molecules beyond the diffraction and diffusion limit using plasmonic nanostructures. Journal of Nanophotonics, 2017, 12, 012504.	1.0	10
25	Practical guide to the realization of a convertible optical trapping system. Optics Express, 2017, 25, 2496.	3.4	16
26	Light and Particle Manipulation Based on Optothermal Surface Bubbles. , 2017, , .		0
27	Probing Cell Deformability via Acoustically Actuated Bubbles. Small, 2016, 12, 902-910.	10.0	60
28	Single-molecule detection at high concentrations with optical aperture nanoantennas. Nanoscale, 2016, 8, 9480-9487.	5.6	23
29	Plasmofluidics: Plasmofluidics: Merging Light and Fluids at the Micro-/Nanoscale (Small 35/2015). Small, 2015, 11, 4422-4422.	10.0	1
30	Plasmofluidics: Merging Light and Fluids at the Micro-/Nanoscale. Small, 2015, 11, 4423-4444.	10.0	61
31	Optical trapping of nanoparticles with significantly reduced laser powers by using counter-propagating beams (Presentation Recording)., 2015,,.		0
32	Coupling between surface plasmon polaritons and transverse electric polarized light via L-shaped nano-apertures. Optics Letters, 2015, 40, 978.	3.3	3
33	Theory and experiment on particle trapping and manipulation via optothermally generated bubbles. Lab on A Chip, 2014, 14, 384-391.	6.0	136
34	<i>In Situ</i> Fabrication of 3D Ag@ZnO Nanostructures for Microfluidic Surface-Enhanced Raman Scattering Systems. ACS Nano, 2014, 8, 12175-12184.	14.6	106
35	Dark-Field Illumination on Zero-Mode Waveguide/Microfluidic Hybrid Chip Reveals T4 Replisomal Protein Interactions. Nano Letters, 2014, 14, 1952-1960.	9.1	28
36	Single-molecule detection and radiation control in solutions at high concentrations via a heterogeneous optical slot antenna. Nanoscale, 2014, 6, 9103-9109.	5.6	33

#	Article	IF	Citations
37	Light manipulation with encoded plasmonic nanostructures. EPJ Applied Metamaterials, 2014, 1, 6.	1.5	16
38	Reconfigurable Plasmofluidic Lenses., 2014,,.		2
39	A reconfigurable plasmofluidic lens. Nature Communications, 2013, 4, 2305.	12.8	127
40	Optoacoustic tweezers: a programmable, localized cell concentrator based on opto-thermally generated, acoustically activated, surface bubbles. Lab on A Chip, 2013, 13, 1772.	6.0	63
41	Largeâ€Scale Fabrication of Threeâ€Dimensional Surface Patterns Using Templateâ€Defined Electrochemical Deposition. Advanced Functional Materials, 2013, 23, 720-730.	14.9	67
42	Does the leakage radiation profile mirror the intensity profile of surface plasmon polaritons?: reply to comment. Optics Letters, 2011, 36, 2517.	3.3	0
43	Flexible wavefront manipulation of surface plasmon polaritons without mechanical motion components. Applied Physics Letters, 2011, 98, .	3.3	14
44	Plasmonic Demultiplexer and Guiding. ACS Nano, 2010, 4, 6433-6438.	14.6	61
45	Does the leakage radiation profile mirror the intensity profile of surface plasmon polaritons?. Optics Letters, 2010, 35, 1944.	3.3	19
46	Focusing surface plasmons to multiple focal spots with a launching diffraction grating. Applied Physics Letters, 2009, 94, 111105.	3.3	21
47	Refractive index sensor based on surface-plasmon interference. Optics Letters, 2009, 34, 392.	3.3	68
48	Binary plasmonics: launching surface plasmon polaritons to a desired pattern. Optics Letters, 2009, 34, 2417.	3.3	30
49	An experimental study of the plasmonic Talbot effect. Optics Express, 2009, 17, 19757.	3.4	72
50	Intelligent nanoscope for rapid nanomaterial identification and classification. Lab on A Chip, 0, , .	6.0	6