Yulia B Dudkina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8536086/publications.pdf

Version: 2024-02-01

567281 580821 28 636 15 25 citations h-index g-index papers 30 30 30 504 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	D-Ï∈-A chromophores with a quinoxaline core in the Ï∈-bridge and bulky aryl groups in the acceptor: Synthesis, properties, and femtosecond nonlinear optical activity of the chromophore/PMMA guest-host materials. Dyes and Pigments, 2021, 184, 108801.	3.7	27
2	Considerations on electrochemical behavior of NLO chromophores: Relation of redox properties and NLO activity. Electrochimica Acta, 2021, 368, 137578.	5.2	19
3	D-Ï∈-A'-Ï∈-A chromophores with quinoxaline core in the Ï∈-electron bridge and charged heterocyclic acceptor moiety: Synthesis, DFT calculations, photophysical and electro-chemical properties. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 407, 113042.	3.9	8
4	Composing NLO Chromophore as a Puzzle: Electrochemistryâ€based Approach to Design and Effectiveness. ChemPhysChem, 2021, 22, 2313-2328.	2.1	4
5	Ligand and solvent effects on the kinetics of the electrochemical reduction of Ni(II) complexes: Experiment and quantum chemical modeling. Electrochimica Acta, 2021, 395, 139138.	5.2	4
6	Synthesis of fullerenyl-1,2,3-triazoles by reaction of fullerenyl azide with terminal acetylenes. Organic and Biomolecular Chemistry, 2021, 19, 9299-9305.	2.8	4
7	Indolizine-based chromophores with octatetraene π-bridge and tricyanofurane acceptor: Synthesis, photophysical, electrochemical and electro-optic properties. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 386, 112125.	3.9	9
8	[(MeCN)Ni(CF ₃) ₃] ^{â°'} and [Ni(CF ₃) ₄] ^{2â€"} : Foundations toward the Development of Trifluoromethylations at Unsupported Nickel. Inorganic Chemistry, 2020, 59, 9143-9151.	4.0	17
9	Selective C(sp ²)â∈H Amination Catalyzed by Highâ∈Valent Cobalt(III)/(IV)â€bpy Complex Immobilized on Silica Nanoparticles. ChemCatChem, 2019, 11, 5615-5624.	3.7	10
10	Progress of electrochemical θ_i (sp ²)-H phosphonation. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 415-419.	1.6	14
11	Cyclometalated Nickel Complexes as Key Intermediates in C(sp ²)–H Bond Functionalization: Synthesis, Catalysis, Electrochemical Properties, and DFT Calculations. Organometallics, 2019, 38, 1254-1263.	2.3	15
12	High thermally stable D–π–A chromophores with quinoxaline moieties in the conjugated bridge: Synthesis, DFT calculations and physical properties. Dyes and Pigments, 2018, 156, 175-184.	3.7	27
13	Isomeric indolizine-based ï∈-expanded pushâ∈"pull NLO-chromophores: Synthesis and comparative study. Journal of Molecular Structure, 2018, 1156, 74-82.	3.6	16
14	Nonlinear optical activity of push–pull indolizine-based chromophores with various acceptor moieties. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 364, 764-772.	3.9	13
15	Eco-efficient electrocatalytic C–P bond formation. Pure and Applied Chemistry, 2017, 89, 311-330.	1.9	44
16	Electrochemical and electrophysical properties of aminomethano- and tetrahydropyridino-C 60 -fullerenes. Mendeleev Communications, 2017, 27, 201-203.	1.6	2
17	Push–pull isomeric chromophores with vinyl- and divinylquinoxaline-2-one units as π-electron bridge: Synthesis, photophysical, thermal and electro-chemical properties. Dyes and Pigments, 2017, 146, 82-91.	3.7	23
18	Redox trends in cyclometalated palladium(<scp>ii</scp>) complexes. Dalton Transactions, 2017, 46, 165-177.	3.3	34

#	ARTICLE	IF	CITATION
19	Redox-Induced Aromatic C–H Bond Functionalization in Metal Complex Catalysis from the Electrochemical Point of View. Inorganics, 2017, 5, 70.	2.7	31
20	Electrochemical properties of diphosphonate-bridged palladacycles and their reactivity in arene phosphonation. Journal of Solid State Electrochemistry, 2015, 19, 2665-2672.	2.5	50
21	Nanoheterogeneous catalysis in electrochemically induced olefin perfluoroalkylation. Dalton Transactions, 2015, 44, 8833-8838.	3.3	19
22	Synthesis and Reactivity of New Aminophenolate Complexes of Nickel. Molecules, 2014, 19, 13603-13613.	3.8	2
23	Prospects of synthetic electrochemistry in the development of new methods of electrocatalytic fluoroalkylation. Journal of Organometallic Chemistry, 2014, 751, 301-305.	1.8	30
24	Electrochemical Ortho Functionalization of 2-Phenylpyridine with Perfluorocarboxylic Acids Catalyzed by Palladium in Higher Oxidation States. Organometallics, 2013, 32, 4785-4792.	2.3	85
25	Electrocatalytic fluoroalkylation of olefins. Nickel-catalyzed polyfluoroalkylation of allylisocyanurates. Russian Chemical Bulletin, 2013, 62, 2362-2366.	1.5	3
26	Novel electrochemical pathway to fluoroalkyl phosphines and phosphine oxides. Journal of Fluorine Chemistry, 2013, 153, 178-182.	1.7	15
27	Electrochemical nickel-induced fluoroalkylation: synthetic, structural and mechanistic study. Dalton Transactions, 2012, 41, 165-172.	3.3	46
28	M ^{II} /M ^{III} â€Catalyzed <i>ortho</i> å€Fluoroalkylation of 2â€Phenylpyridine. European Journal of Organic Chemistry, 2012, 2012, 2114-2117.	2.4	65