
David Escors

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8535292/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Complement C5a induces the formation of neutrophil extracellular traps by myeloid-derived suppressor cells to promote metastasis. Cancer Letters, 2022, 529, 70-84.	3.2	51
2	Clinical landscape of LAG-3-targeted therapy. Immuno-Oncology Technology, 2022, 14, 100079.	0.2	37
3	CAR-T Cells for the Treatment of Lung Cancer. Life, 2022, 12, 561.	1.1	8
4	The multi-specific VH-based Humabody CB213 co-targets PD1 and LAG3 on T cells to promote anti-tumour activity. British Journal of Cancer, 2022, 126, 1168-1177.	2.9	9
5	TNF-α-Secreting Lung Tumor-Infiltrated Monocytes Play a Pivotal Role During Anti-PD-L1 Immunotherapy. Frontiers in Immunology, 2022, 13, 811867.	2.2	11
6	Covariant Space-Time Line Elements in the Friedmann–Lemaitre–Robertson–Walker Geometry. Axioms, 2022, 11, 310.	0.9	1
7	Understanding LAG-3 Signaling. International Journal of Molecular Sciences, 2021, 22, 5282.	1.8	78
8	A Proteomic Atlas of Lineage and Cancer-Polarized Expression Modules in Myeloid Cells Modeling Immunosuppressive Tumor-Infiltrating Subsets. Journal of Personalized Medicine, 2021, 11, 542.	1.1	6
9	Constraints on General Relativity Geodesics by a Covariant Geometric Uncertainty Principle. Physics, 2021, 3, 790-798.	0.5	2
10	Systemic CD4 Immunity as a Key Contributor to PD-L1/PD-1 Blockade Immunotherapy Efficacy. Frontiers in Immunology, 2020, 11, 586907.	2.2	40
11	Profound Reprogramming towards Stemness in Pancreatic Cancer Cells as Adaptation to AKT Inhibition. Cancers, 2020, 12, 2181.	1.7	9
12	PD-L1 in Systemic Immunity: Unraveling Its Contribution to PD-1/PD-L1 Blockade Immunotherapy. International Journal of Molecular Sciences, 2020, 21, 5918.	1.8	15
13	Early Detection of Hyperprogressive Disease in Non-Small Cell Lung Cancer by Monitoring of Systemic T Cell Dynamics. Cancers, 2020, 12, 344.	1.7	60
14	Resistance to PD-L1/PD-1 Blockade Immunotherapy. A Tumor-Intrinsic or Tumor-Extrinsic Phenomenon?. Frontiers in Pharmacology, 2020, 11, 441.	1.6	48
15	Systemic Blood Immune Cell Populations as Biomarkers for the Outcome of Immune Checkpoint Inhibitor Therapies. International Journal of Molecular Sciences, 2020, 21, 2411.	1.8	28
16	Systemic CD4 immunity: A powerful clinical biomarker for PD‣1/PD‣ immunotherapy. EMBO Molecular Medicine, 2020, 12, e12706.	3.3	19
17	Perforin and Granzyme B Expressed by Murine Myeloid-Derived Suppressor Cells: A Study on Their Role in Outgrowth of Cancer Cells. Cancers, 2019, 11, 808.	1.7	22
18	Functional systemic <scp>CD</scp> 4 immunity is required for clinical responses to <scp>PD</scp> â€L1/ <scp>PD</scp> â€L blockade therapy. EMBO Molecular Medicine, 2019, 11, e10293.	3.3	145

#	Article	IF	CITATIONS
19	PD-L1 Expression in Systemic Immune Cell Populations as a Potential Predictive Biomarker of Responses to PD-L1/PD-1 Blockade Therapy in Lung Cancer. International Journal of Molecular Sciences, 2019, 20, 1631.	1.8	59
20	Radiopotentiation of enzalutamide over human prostate cancer cells as assessed by real-time cell monitoring. Reports of Practical Oncology and Radiotherapy, 2019, 24, 221-226.	0.3	6
21	Cancer Immunotherapy of TLR4 Agonist–Antigen Constructs Enhanced with Pathogenâ€Mimicking Magnetite Nanoparticles and Checkpoint Blockade of PD‣1. Small, 2019, 15, e1803993.	5.2	44
22	Effective cancer immunotherapy in mice by polyIC-imiquimod complexes and engineered magnetic nanoparticles. Biomaterials, 2018, 170, 95-115.	5.7	81
23	Characterization of Macrophage Endogenous <i>S</i> -Nitrosoproteome Using a Cysteine-Specific Phosphonate Adaptable Tag in Combination with TiO ₂ Chromatography. Journal of Proteome Research, 2018, 17, 1172-1182.	1.8	21
24	Myeloid-Derived Suppressor Cells in theÂTumor Microenvironment: Current Knowledge and Future Perspectives. Archivum Immunologiae Et Therapiae Experimentalis, 2018, 66, 113-123.	1.0	36
25	Systemic immunological biomarkers of clinical responses in immune checkpoint blockade therapies. Lung Cancer Management, 2018, 7, LMT07.	1.5	1
26	The intracellular signalosome of PD-L1 in cancer cells. Signal Transduction and Targeted Therapy, 2018, 3, 26.	7.1	174
27	Molecular Recalibration of PD-1+ Antigen-Specific T Cells from Blood and Liver. Molecular Therapy, 2018, 26, 2553-2566.	3.7	20
28	Editorial on "PD-1 is a haploinsufficient suppressor of T cell lymphomagenesis― Translational Cancer Research, 2018, 7, S58-S60.	0.4	0
29	A sestrin-dependent Erk–Jnk–p38 MAPK activation complex inhibits immunity during aging. Nature Immunology, 2017, 18, 354-363.	7.0	223
30	Dendritic Cells Cross-Present Immunogenic Lentivector-Encoded Antigen from Transduced Cells to Prime Functional T Cell Immunity. Molecular Therapy, 2017, 25, 504-511.	3.7	8
31	Antigen-presenting cell-targeted lentiviral vectors do not support the development of productive T-cell effector responses: implications for in vivo targeted vaccine delivery. Gene Therapy, 2017, 24, 370-375.	2.3	11
32	Immunotherapy in malignant melanoma: recent approaches and new perspectives. Melanoma Management, 2017, 4, 39-48.	0.1	7
33	PDL1 Signals through Conserved Sequence Motifs to Overcome Interferon-Mediated Cytotoxicity. Cell Reports, 2017, 20, 1818-1829.	2.9	220
34	Report from the II Melanoma Translational Meeting of the Spanish Melanoma Group (GEM). Annals of Translational Medicine, 2017, 5, 390-390.	0.7	0
35	PD1 signal transduction pathways in T cells. Oncotarget, 2017, 8, 51936-51945.	0.8	191
36	Molecular mechanisms of programmed cell death-1 dependent T cell suppression: relevance for immunotherapy. Annals of Translational Medicine, 2017, 5, 385-385.	0.7	50

#	Article	IF	CITATIONS
37	Non-invasive assessment of murine PD-L1 levels in syngeneic tumor models by nuclear imaging with nanobody tracers. Oncotarget, 2017, 8, 41932-41946.	0.8	95
38	<i>CHL1</i> hypermethylation as a potential biomarker of poor prognosis in breast cancer. Oncotarget, 2017, 8, 15789-15801.	0.8	32
39	Novel immunotherapies for the treatment of melanoma. Immunotherapy, 2016, 8, 613-632.	1.0	5
40	Drafting the proteome landscape of myeloidâ€derived suppressor cells. Proteomics, 2016, 16, 367-378.	1.3	26
41	Gene promoter hypermethylation is found in sentinel lymph nodes of breast cancer patients, in samples identified as positive by one-step nucleic acid amplification of cytokeratin 19 mRNA. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2016, 469, 51-59.	1.4	13
42	Lentiviral expression of GAD67 and CCK promoter-driven opsins to target interneuronsin vitroandin vivo. Journal of Gene Medicine, 2016, 18, 27-37.	1.4	1
43	Ex Vivo MDSC Differentiation Models. SpringerBriefs in Immunology, 2016, , 49-59.	0.1	0
44	Distinct Activation Mechanisms of NF-κB Regulator Inhibitor of NF-κB Kinase (IKK) by Isoforms of the Cell Death Regulator Cellular FLICE-like Inhibitory Protein (cFLIP). Journal of Biological Chemistry, 2016, 291, 7608-7620.	1.6	23
45	Differentiation of Murine Myeloid-Derived Suppressor Cells. SpringerBriefs in Immunology, 2016, , 25-37.	0.1	0
46	Differential role of gene hypermethylation in adenocarcinomas, squamous cell carcinomas and cervical intraepithelial lesions of the uterine cervix. Pathology International, 2015, 65, 476-485.	0.6	14
47	The transduction pattern of ILâ€12â€encoding lentiviral vectors shapes the immunological outcome. European Journal of Immunology, 2015, 45, 3351-3361.	1.6	14
48	<i>Ex vivo</i> generation of myeloid-derived suppressor cells that model the tumor immunosuppressive environment in colorectal cancer. Oncotarget, 2015, 6, 12369-12382.	0.8	59
49	A core of kinase-regulated interactomes defines the neoplastic MDSC lineage. Oncotarget, 2015, 6, 27160-27175.	0.8	51
50	Construction of stable packaging cell lines for clinical lentiviral vector production. Scientific Reports, 2015, 5, 9021.	1.6	74
51	EPB41L3, TSP-1 and RASSF2 as new clinically relevant prognostic biomarkers in diffuse gliomas. Oncotarget, 2015, 6, 368-380.	0.8	23
52	Differential involvement of RASSF2 hypermethylation in breast cancer subtypes and their prognosis. Oncotarget, 2015, 6, 23944-23958.	0.8	21
53	Tumour Immunogenicity, Antigen Presentation, and Immunological Barriers in Cancer Immunotherapy. New Journal of Science, 2014, 2014, 1-25.	1.0	75
54	A highly efficient tumor-infiltrating MDSC differentiation system for discovery of anti-neoplastic targets, which circumvents the need for tumor establishment in mice. Oncotarget, 2014, 5, 7843-7857.	0.8	62

#	Article	IF	CITATIONS
55	Manipulating Immune Regulatory Pathways to Enhance T Cell Stimulation. , 2014, , .		4
56	Pseudaminic Acid on Campylobacter jejuni Flagella Modulates Dendritic Cell IL-10 Expression via Siglec-10 Receptor: A Novel Flagellin-Host Interaction. Journal of Infectious Diseases, 2014, 210, 1487-1498.	1.9	70
57	Harnessing alveolar macrophages for sustained mucosal T-cell recall confers long-term protection to mice against lethal influenza challenge without clinical disease. Mucosal Immunology, 2014, 7, 89-100.	2.7	19
58	Novel function for the p38â€MK2 signaling pathway in circulating CD1c+ (BDCAâ€1+) myeloid dendritic cells from healthy donors and advanced cancer patients; inhibition of p38 enhances ILâ€12 whilst suppressing ILâ€10. International Journal of Cancer, 2014, 134, 575-586.	2.3	15
59	Anti-melanoma vaccines engineered to simultaneously modulate cytokine priming and silence PD-L1 characterized using <i>ex vivo</i> myeloid-derived suppressor cells as a readout of therapeutic efficacy. Oncolmmunology, 2014, 3, e945378.	2.1	37
60	Impact of T cell selection methods in the success of clinical adoptive immunotherapy. Cellular and Molecular Life Sciences, 2014, 71, 1211-1224.	2.4	5
61	Interference with PD-L1/PD-1 co-stimulation during antigen presentation enhances the multifunctionality of antigen-specific T cells. Gene Therapy, 2014, 21, 262-271.	2.3	73
62	The kinase p38 activated by the metabolic regulator AMPK and scaffold TAB1 drives the senescence of human T cells. Nature Immunology, 2014, 15, 965-972.	7.0	243
63	Intratumoral administration of mRNA encoding a fusokine consisting of IFN-β and the ectodomain of the TGF-β receptor II potentiates antitumor immunity. Oncotarget, 2014, 5, 10100-10113.	0.8	66
64	Immune modulation by genetic modification of dendritic cells with lentiviral vectors. Virus Research, 2013, 176, 1-15.	1.1	20
65	Lentiviral Vectors for Cancer Immunotherapy and Clinical Applications. Cancers, 2013, 5, 815-837.	1.7	33
66	Modulation of Regulatory T Cell Function by Monocyte-Derived Dendritic Cells Matured through Electroporation with mRNA Encoding CD40 Ligand, Constitutively Active TLR4, and CD70. Journal of Immunology, 2013, 191, 1976-1983.	0.4	47
67	DNA fusion vaccine designs to induce tumor-lytic CD8+ T-cell attack via the immunodominant cysteine-containing epitope of NY-ESO 1. International Journal of Cancer, 2013, 133, 1400-1407.	2.3	13
68	Assessing T-cell responses in anticancer immunotherapy. Oncolmmunology, 2013, 2, e26148.	2.1	27
69	Role of non-classical MHC class I molecules in cancer immunosuppression. OncoImmunology, 2013, 2, e26491.	2.1	131
70	Signaling Mechanisms that Balance Anti-viral, Auto-reactive, and Antitumor Potential of Low Affinity T Cells. Journal of Clinical & Cellular Immunology, 2013, 01, .	1.5	29
71	Retroviral and Lentiviral Vectors for the Induction of Immunological Tolerance. Scientifica, 2012, 2012, 1-14.	0.6	30
72	Selective Activation of Intracellular Signalling Pathways in Dendritic Cells for Cancer Immunotherapy. Anti-Cancer Agents in Medicinal Chemistry, 2012, 12, 29-39.	0.9	23

#	Article	IF	CITATIONS
73	PD-L1 co-stimulation, ligand-induced TCR down-modulation and anti-tumor immunotherapy. Oncolmmunology, 2012, 1, 86-88.	2.1	44
74	Modulating Co-Stimulation During Antigen Presentation to Enhance Cancer Immunotherapy. Immunology, Endocrine and Metabolic Agents in Medicinal Chemistry, 2012, 12, 224-235.	0.5	45
75	Immunomodulation by Genetic Modification Using Lentiviral Vectors. SpringerBriefs in Biochemistry and Molecular Biology, 2012, , 51-67.	0.3	Ο
76	Clinical Grade Lentiviral Vectors. SpringerBriefs in Biochemistry and Molecular Biology, 2012, , 69-85.	0.3	1
77	Development of Retroviral and Lentiviral Vectors. SpringerBriefs in Biochemistry and Molecular Biology, 2012, , 11-28.	0.3	0
78	Cell and Tissue Gene Targeting with Lentiviral Vectors. SpringerBriefs in Biochemistry and Molecular Biology, 2012, , 29-50.	0.3	0
79	Targeting Lentiviral Vectors for Cancer Immunotherapy. Current Cancer Therapy Reviews, 2011, 7, 248-260.	0.2	13
80	PDâ€L1 coâ€stimulation contributes to ligandâ€induced T cell receptor downâ€modulation on CD8 ⁺ T cells. EMBO Molecular Medicine, 2011, 3, 581-592.	3.3	234
81	Selective ERK activation differentiates mouse and human tolerogenic dendritic cells, expands antigenâ€specific regulatory T cells, and suppresses experimental inflammatory arthritis. Arthritis and Rheumatism, 2011, 63, 84-95.	6.7	62
82	Kaposi's Sarcoma-Associated Herpesvirus vFLIP and Human T Cell Lymphotropic Virus Type 1 Tax Oncogenic Proteins Activate IÂB Kinase Subunit by Different Mechanisms Independent of the Physiological Cytokine-Induced Pathways. Journal of Virology, 2011, 85, 7444-7448.	1.5	15
83	Conventional Dendritic Cells Are Required for the Activation of Helper-Dependent CD8 T Cell Responses to a Model Antigen After Cutaneous Vaccination with Lentiviral Vectors. Journal of Immunology, 2011, 186, 4565-4572.	0.4	32
84	On the Mechanism of T cell receptor down-modulation and its physiological significance. The Journal of Bioscience and Medicine, 2011, 1, .	0.4	9
85	Lentiviral Vectors in Gene Therapy: Their Current Status and Future Potential. Archivum Immunologiae Et Therapiae Experimentalis, 2010, 58, 107-119.	1.0	262
86	Generation of multi-functional antigen-specific human T-cells by lentiviral TCR gene transfer. Gene Therapy, 2010, 17, 721-732.	2.3	38
87	HIV-1 Lentiviral Vector Immunogenicity Is Mediated by Toll-Like Receptor 3 (TLR3) and TLR7. Journal of Virology, 2010, 84, 5627-5636.	1.5	129
88	Dendritic Cells for Active Anti-Cancer Immunotherapy: Targeting Activation Pathways Through Genetic Modification. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2009, 9, 328-343.	0.6	61
89	Nonintegrating Lentivector Vaccines Stimulate Prolonged T-Cell and Antibody Responses and Are Effective in Tumor Therapy. Journal of Virology, 2009, 83, 3094-3103.	1.5	82
90	Targeting dendritic cell signaling to regulate the response to immunization. Blood, 2008, 111, 3050-3061.	0.6	119

#	Article	IF	CITATIONS
91	Growth factors improve gene expression after lentiviral transduction in human adult and fetal hepatocytes. Journal of Gene Medicine, 2007, 9, 67-76.	1.4	30
92	Membrane cell fusion activity of the vaccinia virus A17?A27 protein complex. Cellular Microbiology, 2007, 10, 070816180854001-???.	1.1	34
93	Construction of a Severe Acute Respiratory Syndrome Coronavirus Infectious cDNA Clone and a Replicon To Study Coronavirus RNA Synthesis. Journal of Virology, 2006, 80, 10900-10906.	1.5	198
94	Phosphorylation and subcellular localization of transmissible gastroenteritis virus nucleocapsid protein in infected cells. Journal of General Virology, 2005, 86, 2255-2267.	1.3	52
95	A Novel Sorting Signal for Intracellular Localization Is Present in the S Protein of a Porcine Coronavirus but Absent from Severe Acute Respiratory Syndrome-associated Coronavirus. Journal of Biological Chemistry, 2004, 279, 43661-43666.	1.6	52
96	Immunopurification applied to the study of virus protein composition and encapsidation. Journal of Virological Methods, 2004, 119, 57-64.	1.0	7
97	Transmissible Gastroenteritis Coronavirus Packaging Signal Is Located at the 5′ End of the Virus Genome. Journal of Virology, 2003, 77, 7890-7902.	1.5	68
98	Generation of a Replication-Competent, Propagation-Deficient Virus Vector Based on the Transmissible Gastroenteritis Coronavirus Genome. Journal of Virology, 2002, 76, 11518-11529.	1.5	145
99	Nature of the Virus Associated with Endemic Balkan Nephropathy. Emerging Infectious Diseases, 2002, 8, 869-870.	2.0	7
100	Coronavirus derived expression systems. Journal of Biotechnology, 2001, 88, 183-204.	1.9	40
101	The Membrane M Protein Carboxy Terminus Binds to Transmissible Gastroenteritis Coronavirus Core and Contributes to Core Stability. Journal of Virology, 2001, 75, 1312-1324.	1.5	162
102	Organization of Two Transmissible Gastroenteritis Coronavirus Membrane Protein Topologies within the Virion and Core. Journal of Virology, 2001, 75, 12228-12240.	1.5	68
103	The Membrane M Protein of the Transmissible Gastroenteritis Coronavirus Binds to the Internal Core through the Carboxy-Terminus. Advances in Experimental Medicine and Biology, 2001, 494, 589-593.	0.8	11
104	Targeted Lentiviral Vectors: Current Applications and Future Potential. , 0, , .		3
105	Lentiviral Vectors in Immunotherapy. , 0, , .		0
106	Signal transducer and activator of transcription 3 in myeloid-derived suppressor cells: an opportunity for cancer therapy. Oncotarget, 0, 7, 42698-42715.	0.8	34
107	On the Mechanism of T cell receptor downmodulation and its physiological significance. The Journal of Bioscience and Medicine, 0, , 1-6.	0.4	12