Ioanna G Mandala

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8535151/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exploration of Betalains and Determination of the Antioxidant and Cytotoxicity Profile of Orange and Purple Opuntia spp. Cultivars in Greece. Plant Foods for Human Nutrition, 2022, 77, 198-205.	1.4	3
2	Whey protein films reinforced with bacterial cellulose nanowhiskers: Improving edible film properties via a circular economy approach. Food Chemistry, 2022, 385, 132604.	4.2	41
3	Chemical Profiling, Bioactivity Evaluation and the Discovery of a Novel Biopigment Produced by Penicillium purpurogenum CBS 113139. Molecules, 2022, 27, 69.	1.7	5
4	Tuning the physical and functional properties of whey protein edible films: Effect of pH and inclusion of antioxidants from spent coffee grounds. Sustainable Chemistry and Pharmacy, 2022, 27, 100700.	1.6	10
5	Physicochemical and rheological characteristics of pectin extracted from renewable orange peel employing conventional and green technologies. Food Hydrocolloids, 2022, 132, 107887.	5.6	11
6	The Effect of Inulin on the Physical and Textural Properties of Biscuits Containing Jet Milled Barley Flour. Polysaccharides, 2021, 2, 39-46.	2.1	1
7	Jet milling conditions impact on wheat flour particle size. Journal of Food Engineering, 2021, 294, 110418.	2.7	13
8	Current and new Green Deal solutions for sustainable food processing. Current Opinion in Environmental Science and Health, 2021, 21, 100244.	2.1	7
9	Effect of drying and grinding or micro-grinding process on physical and rheological properties of whole cladode (Opuntia ficus-indica) flour. LWT - Food Science and Technology, 2021, 151, 112171.	2.5	6
10	Effect of starch concentration and resistant starch filler addition on the physical properties of starch hydrogels. Journal of Food Science, 2021, 86, 5340-5352.	1.5	9
11	Effect of rheological and structural properties of bacterial cellulose fibrils and whey protein biocomposites on electrosprayed food-grade particles. Carbohydrate Polymers, 2020, 241, 116319.	5.1	18
12	Physical properties and sensory evaluation of bread containing micronized whole wheat flour. Food Chemistry, 2020, 318, 126497.	4.2	36
13	Olive Oil Oleogel Formulation Using Wax Esters Derived from Soybean Fatty Acid Distillate. Biomolecules, 2020, 10, 106.	1.8	27
14	Modification of resistant starch nanoparticles using high-pressure homogenization treatment. Food Hydrocolloids, 2020, 103, 105677.	5.6	62
15	Rheological characterization of liquid nanoencapsulated food ingredients by viscometers. , 2020, , 529-545.		1
16	Enzymatic synthesis of bio-based wax esters from palm and soybean fatty acids using crude lipases produced on agricultural residues. Industrial Crops and Products, 2019, 139, 111499.	2.5	21
17	Bioprocess development for the production of novel oleogels from soybean and microbial oils. Food Research International, 2019, 126, 108684.	2.9	28
18	Development of Microbial Oil Wax-Based Oleogel with Potential Application in Food Formulations. Food and Bioprocess Technology, 2019, 12, 899-909.	2.6	22

IOANNA G MANDALA

#	Article	IF	CITATIONS
19	Encapsulation of EGCG and esterified EGCG derivatives in double emulsions containing Whey Protein Isolate, Bacterial Cellulose and salt. Food Chemistry, 2019, 281, 171-177.	4.2	33
20	Modeling the rheological properties of currant paste as a function of plasticizers concentration, storage temperature and time and process temperature. Food Research International, 2019, 116, 1357-1365.	2.9	3
21	Physical and textural properties of biscuits containing jet milled rye and barley flour. Journal of Food Science and Technology, 2019, 56, 367-375.	1.4	22
22	Wheat bread quality attributes using jet milling flour fractions. LWT - Food Science and Technology, 2018, 92, 540-547.	2.5	26
23	Effects of bran size and carob seed flour of optimized bread formulas on glycemic responses in humans: A randomized clinical trial. Journal of Functional Foods, 2018, 46, 345-355.	1.6	12
24	Stability, physical properties and acceptance of salad dressings containing saffron (Crocus sativus) or pomegranate juice powder as affected by high shear (HS) and ultrasonication (US) process. LWT - Food Science and Technology, 2018, 97, 404-413.	2.5	19
25	Improving Carob Flour Performance for Making Gluten-Free Breads by Particle Size Fractionation and Jet Milling. Food and Bioprocess Technology, 2017, 10, 831-841.	2.6	31
26	Protein isolation from jet milled rye flours differing in particle size. Food and Bioproducts Processing, 2017, 104, 13-18.	1.8	12
27	Stability of double emulsions with PCPR, bacterial cellulose and whey protein isolate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 522, 445-452.	2.3	35
28	The effect of salt concentration on swelling power, rheological properties and saltiness perception of waxy, normal and high amylose maize starch. Food and Function, 2017, 8, 3792-3802.	2.1	35
29	Encapsulation of hydrophilic and lipophilized catechin into nanoparticles through emulsion electrospraying. Food Hydrocolloids, 2017, 64, 123-132.	5.6	62
30	Influence of jet milling and particle size on the composition, physicochemical and mechanical properties of barley and rye flours. Food Chemistry, 2017, 215, 326-332.	4.2	91
31	Encapsulation by nanoemulsions. , 2017, , 36-73.		35
32	Structural modification of bacterial cellulose fibrils under ultrasonic irradiation. Carbohydrate Polymers, 2016, 150, 5-12.	5.1	42
33	Effect of jet milled whole wheat flour in biscuits properties. LWT - Food Science and Technology, 2016, 74, 106-113.	2.5	28
34	Stability and physical properties of model macro- and nano/submicron emulsions containing fenugreek gum. Food Hydrocolloids, 2016, 61, 625-632.	5.6	17
35	Bacterial cellulose as stabilizer of o/w emulsions. Food Hydrocolloids, 2016, 53, 225-232.	5.6	150
36	Structural role of fibre addition to increase knowledge of non-gluten bread. Journal of Cereal Science, 2016, 67, 58-67.	1.8	44

IOANNA G MANDALA

#	Article	IF	CITATIONS
37	Jet milling effect on wheat flour characteristics and starch hydrolysis. Journal of Food Science and Technology, 2016, 53, 784-791.	1.4	47
38	Effect of bacterial cellulose addition on physical properties of WPI emulsions. Comparison with common thickeners. Food Hydrocolloids, 2016, 54, 245-254.	5.6	77
39	Stability properties of different fenugreek galactomannans in emulsions prepared by high-shear and ultrasonic method. Food Hydrocolloids, 2016, 52, 487-496.	5.6	20
40	Emerging product formation. , 2015, , 293-317.		12
41	Bacterial Cellulose Production from Industrial Waste and by-Product Streams. International Journal of Molecular Sciences, 2015, 16, 14832-14849.	1.8	235
42	Wine lees valorization: Biorefinery development including production of a generic fermentation feedstock employed for poly(3-hydroxybutyrate) synthesis. Food Research International, 2015, 73, 81-87.	2.9	83
43	Rheological, Physical, and Sensory Attributes of Glutenâ€Free Rice Cakes Containing Resistant Starch. Journal of Food Science, 2015, 80, E341-8.	1.5	34
44	Jet Milling Effect on Functionality, Quality and In Vitro Digestibility of Whole Wheat Flour and Bread. Food and Bioprocess Technology, 2015, 8, 1319-1329.	2.6	53
45	Olive oil emulsions formed by catastrophic phase inversion using bacterial cellulose and whey protein isolate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 486, 203-210.	2.3	14
46	Influence of Ultrasonication Parameters on Physical Characteristics of Olive Oil Model Emulsions Containing Xanthan. Food and Bioprocess Technology, 2014, 7, 2038-2049.	2.6	56
47	Physical characteristics of submicron emulsions upon partial displacement of whey protein by a small molecular weight surfactant and pectin addition. Food Research International, 2014, 66, 401-408.	2.9	31
48	Effect of Carob Flour Addition on the Rheological Properties of Gluten-Free Breads. Food and Bioprocess Technology, 2014, 7, 868-876.	2.6	50
49	Ultrasonic energy input influence οn the production of sub-micron o/w emulsions containing whey protein and common stabilizers. Ultrasonics Sonochemistry, 2013, 20, 881-891.	3.8	91
50	Rheological and sensory attributes of cream caramel desserts containing fructooligosaccharides as substitute sweeteners. International Journal of Food Science and Technology, 2013, 48, 663-669.	1.3	12
51	Mathematical approach of structural and textural properties of gluten free bread enriched with carob flour. Journal of Cereal Science, 2012, 56, 603-609.	1.8	50
52	Effect of Iron Fortification on Physical and Sensory Quality of Gluten-Free Bread. Food and Bioprocess Technology, 2012, 5, 385-390.	2.6	27
53	Gluten-Free Bread. , 2011, , 161-169.		8
54	The influence of functional properties of different whey protein concentrates on the rheological and emulsification capacity of blends with xanthan gum. Carbohydrate Polymers, 2011, 86, 433-440.	5.1	22

IOANNA G MANDALA

#	Article	IF	CITATIONS
55	Compression of gellan gels. Part II: Effect of sugars. Food Hydrocolloids, 2010, 24, 392-397.	5.6	19
56	Effect of different iron compounds on wheat and gluten-free breads. Journal of the Science of Food and Agriculture, 2010, 90, 1136-1145.	1.7	19
57	Effect of inulin on texture and clarity of gellan gels. Journal of Food Engineering, 2010, 101, 381-385.	2.7	18
58	Effect of water, albumen and fat on the quality of glutenâ€free bread containing amaranth. International Journal of Food Science and Technology, 2010, 45, 661-669.	1.3	70
59	Compression of gellan gels. Part I: effect of salts. International Journal of Food Science and Technology, 2010, 45, 1076-1080.	1.3	17
60	Influence of frozen storage on bread enriched with different ingredients. Journal of Food Engineering, 2009, 92, 137-145.	2.7	57
61	Physical properties of breads containing hydrocolloids stored at low temperature: II—Effect of freezing. Food Hydrocolloids, 2008, 22, 1443-1451.	5.6	39
62	Sensory characteristics and iron dialyzability of gluten-free bread fortified with iron. Food Chemistry, 2007, 102, 309-316.	4.2	58
63	Textural attributes of commercial biscuits. Effect of relative humidity on their quality. International Journal of Food Science and Technology, 2006, 41, 782-789.	1.3	14
64	Physical properties of fresh and frozen stored, microwave-reheated breads, containing hydrocolloids. Journal of Food Engineering, 2005, 66, 291-300.	2.7	47
65	Influence of osmotic dehydration conditions on apple air-drying kinetics and their quality characteristics. Journal of Food Engineering, 2005, 69, 307-316.	2.7	141
66	The sensory attributes of cakes containing large numbers of low sugar raisins, as evaluated by consumers and a trained sensory panel. International Journal of Food Science and Technology, 2005, 40, 759-769.	1.3	4
67	Phase and rheological behaviors of xanthan/amylose and xanthan/starch mixed systems. Carbohydrate Polymers, 2004, 58, 285-292.	5.1	39