

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8534771/publications.pdf Version: 2024-02-01

YE YANG

#	Article	IF	CITATIONS
1	Modulation of the Bi ³⁺ 6s ² Lone Pair State in Perovskites for Highâ€Mobility pâ€Type Oxide Semiconductors. Advanced Science, 2022, 9, e2104141.	11.2	23
2	Reducing Limitations of Aggregationâ€Induced Photocarrier Trapping for Photovoltaic Stability via Tailoring Intermolecular Electron–Phonon Coupling in Highly Efficient Quaternary Polymer Solar Cells (Adv. Energy Mater. 6/2022). Advanced Energy Materials, 2022, 12, .	19.5	1
3	Reducing Limitations of Aggregationâ€Induced Photocarrier Trapping for Photovoltaic Stability via Tailoring Intermolecular Electron–Phonon Coupling in Highly Efficient Quaternary Polymer Solar Cells. Advanced Energy Materials, 2022, 12, .	19.5	29
4	Boosting the Optical Absorption of Melanin-like Polymers. Macromolecules, 2022, 55, 3493-3501.	4.8	33
5	Single photovoltaic material solar cells with enhanced exciton dissociation and extended electron diffusion. Cell Reports Physical Science, 2022, 3, 100895.	5.6	13
6	Ultrafast Anisotropic Evolution of Photoconductivity in Sb ₂ Se ₃ Single Crystals. Journal of Physical Chemistry Letters, 2022, 13, 4988-4994.	4.6	7
7	Transient Suppression of Carrier Mobility Due to Hot Optical Phonons in Lead Bromide Perovskites. Journal of Physical Chemistry Letters, 2022, 13, 5488-5494.	4.6	3
8	Efficient Infrared Solar Cells Employing Quantum Dot Solids with Strong Interâ€Dot Coupling and Efficient Passivation. Advanced Functional Materials, 2021, 31, 2006864.	14.9	16
9	Intrinsic polaronic photocarrier dynamics in hematite. Physical Review B, 2021, 103, .	3.2	17
10	Intrachain and Interchain Exciton–Exciton Annihilation in Donor–Acceptor Copolymers. Journal of Physical Chemistry Letters, 2021, 12, 3928-3933.	4.6	16
11	Recombination of Polaronic Electron–Hole Pairs in Hematite Determined by Nuclear Quantum Tunneling. Journal of Physical Chemistry Letters, 2021, 12, 4166-4171.	4.6	11
12	Interplay between Intrachain and Interchain Excited States in Donor–Acceptor Copolymers. Journal of Physical Chemistry B, 2021, 125, 7470-7476.	2.6	10
13	Asymmetric Glycolated Substitution for Enhanced Permittivity and Ecocompatibility of High-Performance Photovoltaic Electron Acceptor. Jacs Au, 2021, 1, 1733-1742.	7.9	47
14	Dynamic variation of excitonic coupling in excited bilayer graphene quantum dots. Chinese Journal of Chemical Physics, 2021, 34, 591-597.	1.3	0
15	Barrierless Self-Trapping of Photocarriers in Co ₃ O ₄ . Journal of Physical Chemistry Letters, 2021, 12, 12033-12039.	4.6	10
16	Regulating the absorption spectrum of polydopamine. Science Advances, 2020, 6, .	10.3	254
17	Micro-Heterogeneous Annihilation Dynamics of Self-Trapped Excitons in Hematite Single Crystals. Journal of Physical Chemistry Letters, 2020, 11, 7867-7873.	4.6	15
18	Embedding PbS Quantum Dots (QDs) in Pb-Halide Perovskite Matrices: QD Surface Chemistry and Antisolvent Effects on QD Dispersion and Confinement Properties. , 2020, 2, 1464-1472.		18

Ye Yang

#	Article	IF	CITATIONS
19	Transient Evolution of the Built-in Field at Junctions of GaAs. ACS Applied Materials & Interfaces, 2020, 12, 40339-40346.	8.0	10
20	Hot-carrier transfer at photocatalytic silicon/platinum interfaces. Journal of Chemical Physics, 2020, 152, 144705.	3.0	8
21	Both Free and Trapped Carriers Contribute to Photocurrent of Sb ₂ Se ₃ Solar Cells. Journal of Physical Chemistry Letters, 2019, 10, 4881-4887.	4.6	47
22	Molecular bilayer graphene. Nature Communications, 2019, 10, 3057.	12.8	51
23	Interfacial engineering of gallium indium phosphide photoelectrodes for hydrogen evolution with precious metal and non-precious metal based catalysts. Journal of Materials Chemistry A, 2019, 7, 16821-16832.	10.3	24
24	Excitonic Effects in Methylammonium Lead Halide Perovskites. Journal of Physical Chemistry Letters, 2018, 9, 2595-2603.	4.6	107
25	Dynamics of Photocatalytic Hydrogen Production in Aqueous Dispersions of Monolayer-Rich Tungsten Disulfide. ACS Energy Letters, 2018, 3, 2223-2229.	17.4	26
26	Stable Formamidiniumâ€Based Perovskite Solar Cells via In Situ Grain Encapsulation. Advanced Energy Materials, 2018, 8, 1800232.	19.5	78
27	Perovskite Solar Cells: Stable Formamidinium-Based Perovskite Solar Cells via In Situ Grain Encapsulation (Adv. Energy Mater. 22/2018). Advanced Energy Materials, 2018, 8, 1870101.	19.5	1
28	Impact of Layer Thickness on the Charge Carrier and Spin Coherence Lifetime in Two-Dimensional Layered Perovskite Single Crystals. ACS Energy Letters, 2018, 3, 2273-2279.	17.4	126
29	Top and bottom surfaces limit carrier lifetime in lead iodide perovskite films. Nature Energy, 2017, 2, .	39.5	376
30	Characterization of basic physical properties of Sb2Se3 and its relevance for photovoltaics. Frontiers of Optoelectronics, 2017, 10, 18-30.	3.7	301
31	Highâ€Brightness Blue and White LEDs based on Inorganic Perovskite Nanocrystals and their Composites. Advanced Materials, 2017, 29, 1606859.	21.0	237
32	Extrinsic ion migration in perovskite solar cells. Energy and Environmental Science, 2017, 10, 1234-1242.	30.8	458
33	Enhanced Sb ₂ Se ₃ solar cell performance through theory-guided defect control. Progress in Photovoltaics: Research and Applications, 2017, 25, 861-870.	8.1	154
34	Surfaces Limit Carrier Lifetimes in Lead Halide Perovskite Films. , 2017, , .		0
35	Charge Transfer Dynamics from Photoexcited Semiconductor Quantum Dots. Annual Review of Physical Chemistry, 2016, 67, 259-281.	10.8	156
36	Direct Observation of Photoexcited Hole Localization in CdSe Nanorods. ACS Energy Letters, 2016, 1, 76-81.	17.4	17

Ye Yang

#	Article	IF	CITATIONS
37	Large polarization-dependent exciton optical Stark effect in lead iodide perovskites. Nature Communications, 2016, 7, 12613.	12.8	98
38	Electron–Rotor Interaction in Organic–Inorganic Lead Iodide Perovskites Discovered by Isotope Effects. Journal of Physical Chemistry Letters, 2016, 7, 2879-2887.	4.6	79
39	Highly Enhanced Photoelectrochemical Water Oxidation Efficiency Based on Triadic Quantum Dot/Layered Double Hydroxide/BiVO ₄ Photoanodes. ACS Applied Materials & Interfaces, 2016, 8, 19446-19455.	8.0	227
40	Competition of branch-to-core exciton localization and interfacial electron transfer in CdSe tetrapods. Chemical Physics, 2016, 471, 32-38.	1.9	11
41	Observation of a hot-phonon bottleneck in lead-iodide perovskites. Nature Photonics, 2016, 10, 53-59.	31.4	760
42	Comparison of Recombination Dynamics in CH ₃ NH ₃ PbBr ₃ and CH ₃ NH ₃ PbI ₃ Perovskite Films: Influence of Exciton Binding Energy. Journal of Physical Chemistry Letters, 2015, 6, 4688-4692.	4.6	350
43	Photoelectrochemical Water Oxidation Efficiency of a Core/Shell Array Photoanode Enhanced by a Dual Suppression Strategy. ChemSusChem, 2015, 8, 1568-1576.	6.8	95
44	Low surface recombination velocity in solution-grown CH3NH3PbBr3 perovskite single crystal. Nature Communications, 2015, 6, 7961.	12.8	406
45	Electronic Structure and Optical Properties of α-CH ₃ NH ₃ PbBr ₃ Perovskite Single Crystal. Journal of Physical Chemistry Letters, 2015, 6, 4304-4308.	4.6	136
46	Semiconductor interfacial carrier dynamics via photoinduced electric fields. Science, 2015, 350, 1061-1065.	12.6	118
47	Multiple exciton dissociation and hot electron extraction by ultrafast interfacial electron transfer from PbS QDs. Coordination Chemistry Reviews, 2014, 263-264, 229-238.	18.8	40
48	Auger-Assisted Electron Transfer from Photoexcited Semiconductor Quantum Dots. Nano Letters, 2014, 14, 1263-1269.	9.1	197
49	Bulk Transport and Interfacial Transfer Dynamics of Photogenerated Carriers in CdSe Quantum Dot Solid Electrodes. Nano Letters, 2013, 13, 3678-3683.	9.1	19
50	Plasmon-Induced Hot Electron Transfer from the Au Tip to CdS Rod in CdS-Au Nanoheterostructures. Nano Letters, 2013, 13, 5255-5263.	9.1	290
51	Multiexciton Annihilation and Dissociation in Quantum Confined Semiconductor Nanocrystals. Accounts of Chemical Research, 2013, 46, 1270-1279.	15.6	96
52	Strong Electronic Coupling and Ultrafast Electron Transfer between PbS Quantum Dots and TiO ₂ Nanocrystalline Films. Nano Letters, 2012, 12, 303-309.	9.1	130
53	Multiple Exciton Generation and Dissociation in PbS Quantum Dot-Electron Acceptor Complexes. Nano Letters, 2012, 12, 4235-4241.	9.1	105
54	Ultrafast Charge Separation and Recombination Dynamics in Lead Sulfide Quantum Dot–Methylene Blue Complexes Probed by Electron and Hole Intraband Transitions. Journal of the American Chemical Society, 2011, 133, 9246-9249.	13.7	108

#	Article	IF	CITATIONS
55	Comparison of Electron-Transfer Dynamics from Coumarin 343 to TiO2, SnO2, and ZnO Nanocrystalline Thin Films: Role of Interface-Bound Charge-Separated Pairs. Journal of Physical Chemistry C, 2010, 114, 6560-6566.	3.1	89
56	Multiple Exciton Dissociation in CdSe Quantum Dots by Ultrafast Electron Transfer to Adsorbed Methylene Blue. Journal of the American Chemical Society, 2010, 132, 4858-4864.	13.7	212