
Yulong Ying

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8534571/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In-situ generated NiCo2O4/CoP polyhedron with rich oxygen vacancies interpenetrating by P-doped carbon nanotubes for high performance supercapacitors. Journal of Colloid and Interface Science, 2022, 608, 2246-2256.	9.4	32
2	Porous biomass skeleton/Ni-Co LDH composite nanomaterials electrode with high rate capability for advanced supercapacitors. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 635, 128078.	4.7	12
3	Novel CoZnNi oxyphosphide-based electrode with high hydroxyl ion adsorption capacity for ultra-high volumetric energy density asymmetric supercapacitor. Journal of Colloid and Interface Science, 2022, 610, 427-437.	9.4	24
4	Novel 2D/2D NiCo2O4/ZnCo2O4@rGO/CNTs self-supporting composite electrode with high hydroxyl ion adsorption capacity for asymmetric supercapacitor. Journal of Materials Science and Technology, 2022, 127, 236-244.	10.7	42
5	Fully Programmable Collective Behavior of Lightâ€Powered Chemical Microrobotics: pHâ€Đependent Motion Behavior Switch and Controlled Cancer Cell Destruction. Advanced Functional Materials, 2022, 32, .	14.9	9
6	Sixâ€Degreeâ€ofâ€Freedom Steerable Visibleâ€Lightâ€Driven Microsubmarines Using Water as a Fuel: Applicatio for Explosives Decontamination. Small, 2021, 17, e2100294.	n 10.0	22
7	A Maze in Plastic Wastes: Autonomous Motile Photocatalytic Microrobots against Microplastics. ACS Applied Materials & Interfaces, 2021, 13, 25102-25110.	8.0	53
8	Reconstructed Bismuthâ€Based Metalâ^'Organic Framework Nanofibers for Selective CO ₂ â€ŧoâ€Formate Conversion: Morphology Engineering. ChemSusChem, 2021, 14, 3402-3412.	6.8	28
9	Carbon nanotubes interpenetrating MOFs-derived Co-Ni-S composite spheres with interconnected architecture for high performance hybrid supercapacitor. Journal of Colloid and Interface Science, 2021, 602, 627-635.	9.4	57
10	High-performance supercapacitor based on highly active P-doped one-dimension/two-dimension hierarchical NiCo2O4/NiMoO4 for efficient energy storage. Journal of Colloid and Interface Science, 2021, 601, 793-802.	9.4	47
11	Lightâ€Driven ZnO Brushâ€5haped Selfâ€Propelled Micromachines for Nitroaromatic Explosives Decomposition. Small, 2020, 16, e1902944.	10.0	36
12	Bismuthene Microsheets: Bismuthene Metallurgy: Transformation of Bismuth Particles to Ultrahighâ€Aspectâ€Ratio 2D Microsheets (Small 29/2020). Small, 2020, 16, 2070163.	10.0	0
13	Metal–organic-frameworks on 3D-printed electrodes: <i>in situ</i> electrochemical transformation towards the oxygen evolution reaction. Sustainable Energy and Fuels, 2020, 4, 3732-3738.	4.9	15
14	Bismuthene Metallurgy: Transformation of Bismuth Particles to Ultrahighâ€Aspectâ€Ratio 2D Microsheets. Small, 2020, 16, e2002037.	10.0	14
15	Microrobots in Brewery: Dual Magnetic/Lightâ€Powered Hybrid Microrobots for Preventing Microbial Contamination in Beer. Chemistry - A European Journal, 2020, 26, 3039-3043.	3.3	24
16	Radioactive Uranium Preconcentration <i>via</i> Self-Propelled Autonomous Microrobots Based on Metal–Organic Frameworks. ACS Nano, 2019, 13, 11477-11487.	14.6	90
17	Catalytic and Lightâ€Driven ZnO/Pt Janus Nano/Micromotors: Switching of Motion Mechanism via Interface Roughness and Defect Tailoring at the Nanoscale. Advanced Functional Materials, 2019, 29, 1808678.	14.9	74
18	Micro/Nanomotors for Water Purification. Chemistry - A European Journal, 2019, 25, 106-121.	3.3	78

YULONG YING

#	Article	IF	CITATIONS
19	Cross-flow-assembled ultrathin and robust graphene oxide membranes for efficient molecule separation. Nanotechnology, 2018, 29, 155602.	2.6	10
20	ZnO/ZnO ₂ /Pt Janus Micromotors Propulsion Mode Changes with Size and Interface Structure: Enhanced Nitroaromatic Explosives Degradation under Visible Light. ACS Applied Materials & Interfaces, 2018, 10, 42688-42697.	8.0	70
21	Blocking Polysulfides and Facilitating Lithium-Ion Transport: Polystyrene Sulfonate@HKUST-1 Membrane for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2018, 10, 30451-30459.	8.0	69
22	lonic Liquid Selectively Facilitates CO ₂ Transport through Graphene Oxide Membrane. ACS Nano, 2018, 12, 5385-5393.	14.6	161
23	Recent advances of nanomaterial-based membrane for water purification. Applied Materials Today, 2017, 7, 144-158.	4.3	154
24	Robust GQDs Modified Thermally Reduced Graphene Oxide Membranes for Ultrafast and Longâ€Term Purification of Dyeâ€Wasted Water. Advanced Materials Interfaces, 2017, 4, 1700209.	3.7	33
25	Flexible and Binder-Free Hierarchical Porous Carbon Film for Supercapacitor Electrodes Derived from MOFs/CNT. ACS Applied Materials & Interfaces, 2017, 9, 14043-14050.	8.0	167
26	Enhanced Gas Separation through Nanoconfined Ionic Liquid in Laminated MoS ₂ Membrane. ACS Applied Materials & Interfaces, 2017, 9, 44251-44257.	8.0	77
27	High efficient thin-film composite membrane: Ultrathin hydrophilic polyamide film on macroporous superhydrophobic polytetrafluoroethylene substrate. Applied Materials Today, 2017, 8, 54-59.	4.3	12
28	Two-dimensional materials for novel liquid separation membranes. Nanotechnology, 2016, 27, 332001.	2.6	45
29	Ultrafast adsorption and selective desorption of aqueous aromatic dyes by graphene sheets modified by graphene quantum dots. Nanotechnology, 2016, 27, 245703.	2.6	33
30	Mechanical enhancement of a nanoconfined-electrodeposited nacre-like Cu ₂ O layered crystal/graphene oxide nanosheet composite thin film. RSC Advances, 2016, 6, 94845-94850.	3.6	6
31	Self–confined synthesis of HKUSTâ€l membranes from CuO nanosheets at room temperature. ChemistrySelect, 2016, 1, 108-113.	1.5	18
32	High aspect ratio tungsten grating on ultrathin Si membranes for extreme UV lithography. Nanotechnology, 2016, 27, 352501.	2.6	0
33	Polystyrene Sulfonate Threaded through a Metal–Organic Framework Membrane for Fast and Selective Lithiumâ€lon Separation. Angewandte Chemie, 2016, 128, 15344-15348.	2.0	78
34	Polystyrene Sulfonate Threaded through a Metal–Organic Framework Membrane for Fast and Selective Lithiumâ€lon Separation. Angewandte Chemie - International Edition, 2016, 55, 15120-15124.	13.8	272
35	Fe ₃ O ₄ nanoparticle anchored layered graphene films for high performance lithium storage. New Journal of Chemistry, 2016, 40, 2649-2654.	2.8	20
36	Recent advances in carbon-based dots for electroanalysis. Analyst, The, 2016, 141, 2619-2628.	3.5	29

YULONG YING

#	Article	IF	CITATIONS
37	Hierarchical Mesoporous Metal–Organic Frameworks for Enhanced CO ₂ Capture. Chemistry - A European Journal, 2015, 21, 15127-15132.	3.3	59
38	Nonlinear Steady-State Model Based Gas Turbine Health Status Estimation Approach with Improved Particle Swarm Optimization Algorithm. Mathematical Problems in Engineering, 2015, 2015, 1-12.	1.1	20
39	Porous reduced graphene oxide paper as a binder-free electrode for high-performance supercapacitors. RSC Advances, 2015, 5, 27175-27180.	3.6	10
40	Room temperature synthesis of ZIF-8 membranes from seeds anchored in gelatin films for gas separation. CrystEngComm, 2015, 17, 1576-1582.	2.6	18
41	Two-Dimensional Titanium Carbide for Efficiently Reductive Removal of Highly Toxic Chromium(VI) from Water. ACS Applied Materials & Interfaces, 2015, 7, 1795-1803.	8.0	510
42	Binder-free layered Ti ₃ C ₂ /CNTs nanocomposite anodes with enhanced capacity and long-cycle life for lithium-ion batteries. Dalton Transactions, 2015, 44, 7123-7126.	3.3	91
43	Au nanoparticle-decorated ultrathin CdS nanowires for high-efficiency photodegradation of organic dyes. Applied Physics A: Materials Science and Processing, 2015, 120, 1291-1297.	2.3	10
44	Ultrafast Molecule Separation through Layered WS ₂ Nanosheet Membranes. ACS Nano, 2014, 8, 6304-6311.	14.6	276
45	General incorporation of diverse components inside metal-organic framework thin films at room temperature. Nature Communications, 2014, 5, 5532.	12.8	155
46	Zinc hydroxide nanostrands: unique precursors for synthesis of ZIF-8 thin membranes exhibiting high size-sieving ability for gas separation. CrystEngComm, 2014, 16, 9788-9791.	2.6	31
47	Starfish-like Au–CdS hybrids for the highly efficient photocatalytic degradation of organic dyes. RSC Advances, 2014, 4, 42441-42444.	3.6	9
48	In-plane mesoporous graphene oxide nanosheet assembled membranes for molecular separation. RSC Advances, 2014, 4, 21425.	3.6	72
49	Binder-free three-dimensional porous Mn ₃ O ₄ nanorods/reduced graphene oxide paper-like electrodes for electrochemical energy storage. RSC Advances, 2014, 4, 16374.	3.6	53
50	Pressure-Assisted Synthesis of HKUST-1 Thin Film on Polymer Hollow Fiber at Room Temperature toward Gas Separation. ACS Applied Materials & Interfaces, 2014, 6, 4473-4479.	8.0	84
51	Graphene oxide nanosheet: an emerging star material for novel separation membranes. Journal of Materials Chemistry A, 2014, 2, 13772-13782.	10.3	316
52	Specific Oriented Metal–Organic Framework Membranes and Their Facet-Tuned Separation Performance. ACS Applied Materials & Interfaces, 2014, 6, 15676-15685.	8.0	45
53	CuO nanosheets/rGO hybrid lamellar films with enhanced capacitance. Nanoscale, 2013, 5, 9134.	5.6	122
54	Flexible CuO Nanosheets/Reduced-Graphene Oxide Composite Paper: Binder-Free Anode for High-Performance Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2013, 5, 9850-9855.	8.0	173

YULONG YING

#	Article	IF	CITATIONS
55	Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes. Nature Communications, 2013, 4, 2979.	12.8	673
56	Enhanced gas separation through well-intergrown MOF membranes: seed morphology and crystal growth effects. Journal of Materials Chemistry A, 2013, 1, 11711.	10.3	45
57	Nanoporous ZnO nanostructures for photocatalytic degradation of organic pollutants. Applied Physics A: Materials Science and Processing, 2013, 110, 351-359.	2.3	22
58	Salt concentration, pH and pressure controlled separation of small molecules through lamellar graphene oxide membranes. Chemical Communications, 2013, 49, 5963.	4.1	367