
Karolina A Ledwa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8534488/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thermochromic Luminescent Nanomaterials Based on Mn ⁴⁺ /Tb ³⁺ Codoping for Temperature Imaging with Digital Cameras. ACS Applied Materials & Interfaces, 2020, 12, 44039-44048.	8.0	90
2	Enhancing the sensitivity of a Nd ³⁺ ,Yb ³⁺ :YVO ₄ nanocrystalline luminescent thermometer by host sensitization. Physical Chemistry Chemical Physics, 2019, 21, 10532-10539.	2.8	37
3	RuxCe1-xO2-y nanoparticles deposited on functionalized \hat{I}^3 -Al2O3 as a thermally stable oxidation catalyst. Applied Catalysis B: Environmental, 2018, 230, 135-144.	20.2	35
4	Spectral and thermometric properties altering through crystal field strength modification and host material composition in luminescence thermometers based on Fe ³⁺ doped AB ₂ O ₄ type nanocrystals (A = Mg, Ca; B = Al, Ga). Journal of Materials Chemistry C, 2021, 9, 517-527.	5.5	32
5	LiAl5O8:Fe3+ and LiAl5O8:Fe3+, Nd3+ as a New Luminescent Nanothermometer Operating in 1st Biological Optical Window. Nanomaterials, 2020, 10, 189.	4.1	31
6	Structural modification of nanohydroxyapatite Ca10(PO4)6(OH)2 related to Eu3+ and Sr2+ ions doping and its spectroscopic and antimicrobial properties. Journal of Inorganic Biochemistry, 2020, 203, 110884.	3.5	30
7	Enhancing the Relative Sensitivity of V5+, V4+ and V3+ Based Luminescent Thermometer by the Optimization of the Stoichiometry of Y3Al5â^'xGaxO12 Nanocrystals. Nanomaterials, 2019, 9, 1375.	4.1	26
8	Dispersion of ceria nanoparticles on Î ³ -alumina surface functionalized using long chain carboxylic acids. Applied Surface Science, 2017, 400, 212-219.	6.1	24
9	From quencher to potent activator – Multimodal luminescence thermometry with Fe ³⁺ in the oxides MAl ₄ O ₇ (M = Ca, Sr, Ba). Journal of Materials Chemistry C, O, , .	5.5	24
10	Ru0.05Ce0.95O2-y deposited on functionalized alumina as a smart catalyst for propane oxidation. Applied Catalysis B: Environmental, 2020, 274, 119090.	20.2	23
11	Intentional modification of the optical spectral response and relative sensitivity of luminescent thermometers based on Fe ³⁺ ,Cr ³⁺ ,Nd ³⁺ co-doped garnet nanocrystals by crystal field strength optimization. Materials Chemistry Frontiers, 2020, 4, 1697-1705.	5.9	21
12	Thermal stability and propane combustion activity of Rh _x Ce _{1â^'x} O _{2â^'y} nanoparticles deposited on functionalized alumina. Catalysis Science and Technology, 2019, 9, 4633-4644.	4.1	12
13	Effect of the nanoparticle size on thermometric properties of a single-band ratiometric luminescent thermometer in NaYF ₄ :Nd ³⁺ . Journal of Materials Chemistry C, 2022, 10, 3006-3014.	5.5	12
14	Implementing Defects for Ratiometric Luminescence Thermometry. Nanomaterials, 2020, 10, 1333.	4.1	11
15	Reversibility of the Exâ€Solution↔Redispersion Processes of Rhodium in Rh _{0.15} Ce _{0.85} O _{2â€y} Nanoparticles Deposited on Functionalized Alumina. ChemNanoMat, 2020, 6, 1260-1269.	2.8	8
16	Energy transfer study in GdVO4: Bi3+, Yb3+ obtained by microwave-assisted hydrothermal method. Journal of Alloys and Compounds, 2021, 860, 158393.	5.5	6
17	Impact of host composition and dopant ion concentration on the thermometric properties of a Eu3+ activated fluoride-based single-band ratiometric luminescent thermometer. Journal of Alloys and Compounds, 2022, 898, 162839.	5.5	6
18	Regenerability of complex (PdO)xPd0.05-xCe0.95O2-y catalyst stabilized on functionalized alumina surface. Materials Research Bulletin, 2021, 141, 111357.	5.2	5

Karolina A Ledwa

#	Article	IF	CITATIONS
19	A single-band ratiometric luminescent thermometer based on tetrafluorides operating entirely in the infrared region. Nanoscale Advances, 2022, 4, 437-446.	4.6	5
20	Atomically dispersed cerium species in NMxCe1-xO2/Al2O3 (NM = Rh, Ru) catalysts. Materials Research Bulletin, 2020, 122, 110673.	5.2	3
21	Modulation of thermometric performance of single-band-ratiometric luminescent thermometers based on luminescence of Nd3+ activated tetrafluorides by size modification. Scientific Reports, 2022, 12, 5847.	3.3	3
22	Role of SiO ₂ Coating on YAG:V ³⁺ ,Nd ³⁺ Nanoparticles in Luminescence Thermometry. ACS Applied Nano Materials, 2022, 5, 8271-8278.	5.0	2
23	The influence of Ce3+ codoping on upconversion in nanocrystalline NaYF4:Yb3+,Tm3+. Journal of Luminescence, 2022, 251, 119116.	3.1	2
24	A novel approach in light-to-heat conversion: Cr3+-based photothermal agent. Materials Today Chemistry, 2022, 26, 101039.	3.5	2