
Piero Crespo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8534028/publications.pdf Version: 2024-02-01

DIEDO CDESDO

#	Article	IF	CITATIONS
1	The Rho guanosine nucleotide exchange factors Vav2 and Vav3 modulate epidermal stem cell function. Oncogene, 2022, 41, 3341-3354.	2.6	3
2	Metallothionein-3 promotes cisplatin chemoresistance remodelling in neuroblastoma. Scientific Reports, 2021, 11, 5496.	1.6	13
3	ARID2 deficiency promotes tumor progression and is associated with higher sensitivity to chemotherapy in lung cancer. Oncogene, 2021, 40, 2923-2935.	2.6	22
4	Editorial overview: Macromolecular assemblies: clues from structural insights. Current Opinion in Structural Biology, 2021, 67, vi-viii.	2.6	0
5	RAS Dimers: The Novice Couple at the RAS-ERK Pathway Ball. Genes, 2021, 12, 1556.	1.0	10
6	Characterisation of HRas local signal transduction networks using engineered site-specific exchange factors. Small GTPases, 2020, 11, 371-383.	0.7	9
7	RAC1 induces nuclear alterations through the LINC complex to enhance melanoma invasiveness. Molecular Biology of the Cell, 2020, 31, 2768-2778.	0.9	10
8	RAS Subcellular Localization Inversely Regulates Thyroid Tumor Growth and Dissemination. Cancers, 2020, 12, 2588.	1.7	3
9	Mechanisms of action of vitamin D in colon cancer. Journal of Steroid Biochemistry and Molecular Biology, 2019, 185, 1-6.	1.2	94
10	An Integrated Global Analysis of Compartmentalized HRAS Signaling. Cell Reports, 2019, 26, 3100-3115.e7.	2.9	36
11	Regulators of the RAS-ERK pathway as therapeutic targets in thyroid cancer. Endocrine-Related Cancer, 2019, 26, R319-R344.	1.6	24
12	Ras and Rap Signal Bidirectional Synaptic Plasticity via Distinct Subcellular Microdomains. Neuron, 2018, 98, 783-800.e4.	3.8	68
13	The RAS-ERK pathway: A route for couples. Science Signaling, 2018, 11, .	1.6	42
14	RAS at the Golgi antagonizes malignant transformation through PTPRÎ [®] -mediated inhibition of ERK activation. Nature Communications, 2018, 9, 3595.	5.8	18
15	RAS GTPase-dependent pathways in developmental diseases: old guys, new lads, and current challenges. Current Opinion in Cell Biology, 2018, 55, 42-51.	2.6	18
16	Protein–Protein Interactions: Emerging Oncotargets in the RAS-ERK Pathway. Trends in Cancer, 2018, 4, 616-633.	3.8	44
17	Analysis of Ras/ERK Compartmentalization by Subcellular Fractionation. Methods in Molecular Biology, 2017, 1487, 151-162.	0.4	6
18	ERK Signals: Scaffolding Scaffolds?. Frontiers in Cell and Developmental Biology, 2016, 4, 49.	1.8	21

#	Article	IF	CITATIONS
19	Absence of Kâ€Ras Reduces Proliferation and Migration But Increases Extracellular Matrix Synthesis in Fibroblasts. Journal of Cellular Physiology, 2016, 231, 2224-2235.	2.0	12
20	Tumors topple when ERKs uncouple. Molecular and Cellular Oncology, 2016, 3, e1091875.	0.3	1
21	Defined spatiotemporal features of RAS-ERK signals dictate cell fate in MCF-7 mammary epithelial cells. Molecular Biology of the Cell, 2016, 27, 1958-1968.	0.9	23
22	PGA1-induced apoptosis involves specific activation of H-Ras and N-Ras in cellular endomembranes. Cell Death and Disease, 2016, 7, e2311-e2311.	2.7	7
23	H-Ras Distribution and Signaling in Plasma Membrane Microdomains Are Regulated by Acylation and Deacylation Events. Molecular and Cellular Biology, 2015, 35, 1898-1914.	1.1	30
24	Small Molecule Inhibition of ERK Dimerization Prevents Tumorigenesis by RAS-ERK Pathway Oncogenes. Cancer Cell, 2015, 28, 170-182.	7.7	120
25	Spatial control of Cdc42 signalling by a GM130–RasGRF complex regulates polarity and tumorigenesis. Nature Communications, 2014, 5, 4839.	5.8	79
26	Lysine methylation in cancer: SMYD3â€MAP3K2 teaches us new lessons in the Rasâ€ERK pathway. BioEssays, 2014, 36, 1162-1169.	1.2	30
27	The small GTPase N-Ras regulates extracellular matrix synthesis, proliferation and migration in fibroblasts. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 2734-2744.	1.9	16
28	Mxi2 sustains ERK1/2 phosphorylation in the nucleus by preventing ERK1/2 binding to phosphatases. Biochemical Journal, 2012, 441, 571-578.	1.7	13
29	RasCRF suppresses Cdc42-mediated tumour cell movement, cytoskeletal dynamics and transformation. Nature Cell Biology, 2011, 13, 819-826.	4.6	73
30	Mutant K-Ras Activation of the Proapoptotic MST2 Pathway Is Antagonized by Wild-Type K-Ras. Molecular Cell, 2011, 44, 893-906.	4.5	127
31	Working Without Kinase Activity: Phosphotransfer-Independent Functions of Extracellular Signal–Regulated Kinases. Science Signaling, 2011, 4, re3.	1.6	45
32	Ras and Rho GTPases on the move. Bioarchitecture, 2011, 1, 200-204.	1.5	5
33	ERK1/2 MAP kinases promote cell cycle entry by rapid, kinase-independent disruption of retinoblastoma–lamin A complexes. Journal of Cell Biology, 2011, 192, 201-201.	2.3	Ο
34	Ras, an Actor on Many Stages: Posttranslational Modifications, Localization, and Site-Specified Events. Genes and Cancer, 2011, 2, 182-194.	0.6	49
35	The Rasâ€ERK pathway: Understanding siteâ€specific signaling provides hope of new antiâ€ŧumor therapies. BioEssays, 2010, 32, 412-421.	1.2	70
36	ERK1/2 MAP kinases promote cell cycle entry by rapid, kinase-independent disruption of retinoblastoma–lamin A complexes. Journal of Cell Biology, 2010, 191, 967-979.	2.3	71

#	Article	IF	CITATIONS
37	Analysis of ERKs' Dimerization by Electrophoresis. Methods in Molecular Biology, 2010, 661, 335-342.	0.4	5
38	Activation of Ras and Rho GTPases and MAP Kinases by G-Protein-Coupled Receptors. Methods in Molecular Biology, 2010, 661, 137-150.	0.4	21
39	New druggable targets in the Ras pathway?. Current Opinion in Molecular Therapeutics, 2010, 12, 674-83.	2.8	19
40	Structural and Spatial Determinants Regulating TC21 Activation by RasGRF Family Nucleotide Exchange Factors. Molecular Biology of the Cell, 2009, 20, 4289-4302.	0.9	12
41	ERK dimers and scaffold proteins: Unexpected partners for a forgotten (cytoplasmic) task. Cell Cycle, 2009, 8, 1007-1013.	1.3	50
42	Ras Subcellular Localization Defines Extracellular Signal-Regulated Kinase 1 and 2 Substrate Specificity through Distinct Utilization of Scaffold Proteins. Molecular and Cellular Biology, 2009, 29, 1338-1353.	1.1	100
43	Essential Role of ERK Dimers in the Activation of Cytoplasmic but Not Nuclear Substrates by ERK-Scaffold Complexes. Molecular Cell, 2008, 31, 708-721.	4.5	133
44	c-Myc Inhibits Ras-Mediated Differentiation of Pheochromocytoma Cells by Blocking c-Jun Up-Regulation. Molecular Cancer Research, 2008, 6, 325-339.	1.5	30
45	Fast regulation of AP-1 activity through interaction of lamin A/C, ERK1/2, and c-Fos at the nuclear envelope. Journal of Cell Biology, 2008, 183, 653-666.	2.3	153
46	Phosphorylation of p38 by GRK2 at the entrance of its docking domain reveals a novel type of p38 inhibition. Journal of Molecular and Cellular Cardiology, 2007, 42, S51.	0.9	0
47	Mxi2 promotes stimulus-independent ERK nuclear translocation. EMBO Journal, 2007, 26, 635-646.	3.5	48
48	Lysophosphatidic acid rescues RhoA activation and phosphoinositides levels in astrocytes exposed to ethanol. Journal of Neurochemistry, 2007, 102, 1044-1052.	2.1	22
49	Transcriptomal profiling of site-specific Ras signals. Cellular Signalling, 2007, 19, 2264-2276.	1.7	26
50	Phosphorylation of p38 by GRK2 at the Docking Groove Unveils a Novel Mechanism for Inactivating p38MAPK. Current Biology, 2006, 16, 2042-2047.	1.8	124
51	Analysis of Rhes Activation State and Effector Function. Methods in Enzymology, 2006, 407, 535-542.	0.4	8
52	Distinct Utilization of Effectors and Biological Outcomes Resulting from Site-Specific Ras Activation: Ras Functions in Lipid Rafts and Colgi Complex Are Dispensable for Proliferation and Transformation. Molecular and Cellular Biology, 2006, 26, 100-116.	1.1	110
53	Myc Antagonizes Ras-mediated Growth Arrest in Leukemia Cells through the Inhibition of the Ras-ERK-p21Cip1 Pathway. Journal of Biological Chemistry, 2005, 280, 1112-1122.	1.6	37
54	Subcellular Localization Determines the Protective Effects of Activated ERK2 against Distinct Apoptogenic Stimuli in Myeloid Leukemia Cells. Journal of Biological Chemistry, 2004, 279, 32813-32823.	1.6	51

#	Article	IF	CITATIONS
55	Activation of MAPKs by G Protein-Coupled Receptors. , 2004, 250, 203-210.		6
56	Activation of H-Ras in the Endoplasmic Reticulum by the RasGRF Family Guanine Nucleotide Exchange Factors. Molecular and Cellular Biology, 2004, 24, 1516-1530.	1.1	87
57	The small GTP-binding protein, Rhes, regulates signal transduction from G protein-coupled receptors. Oncogene, 2004, 23, 559-568.	2.6	93
58	Vav mediates Ras stimulation by direct activation of the GDP/GTP exchange factor Ras GRP1. EMBO Journal, 2003, 22, 3326-3336.	3.5	68
59	p38α Isoform Mxi2 Binds to Extracellular Signal-Regulated Kinase 1 and 2 Mitogen-Activated Protein Kinase and Regulates Its Nuclear Activity by Sustaining Its Phosphorylation Levels. Molecular and Cellular Biology, 2003, 23, 3079-3090.	1.1	45
60	Differences on the Inhibitory Specificities of H-Ras, K-Ras, and N-Ras (N17) Dominant Negative Mutants Are Related to Their Membrane Microlocalization. Journal of Biological Chemistry, 2003, 278, 4572-4581.	1.6	102
61	p38 mitogen-activated protein kinases: their role in carcinogenesis. , 2003, 5, 320-330.		Ο
62	Erk5 Participates in Neuregulin Signal Transduction and Is Constitutively Active in Breast Cancer Cells Overexpressing ErbB2. Molecular and Cellular Biology, 2002, 22, 270-285.	1.1	163
63	Maintenance of Cdc42 GDP-bound State by Rho-GDI Inhibits MAP Kinase Activation by the Exchange Factor Ras-GRF. Journal of Biological Chemistry, 2001, 276, 21878-21884.	1.6	32
64	H-, K- and N-Ras inhibit myeloid leukemia cell proliferation by a p21WAF1-dependent mechanism. Oncogene, 2000, 19, 783-790.	2.6	53
65	Role of the cAMP and MAPK pathways in the transformation of mouse 3T3 fibroblasts by a TSHR gene constitutively activated by point mutation. Oncogene, 2000, 19, 4896-4905.	2.6	15
66	Ras proteins in the control of the cell cycle and cell differentiation. Cellular and Molecular Life Sciences, 2000, 57, 1613-1636.	2.4	160
67	The Rho Family GTPase Cdc42 Regulates the Activation of Ras/MAP Kinase by the Exchange Factor Ras-GRF. Journal of Biological Chemistry, 2000, 275, 26441-26448.	1.6	40
68	Myeloid Leukemia Cell Growth and Differentiation Are Independent of Mitogen-activated Protein Kinase ERK1/2 Activation. Journal of Biological Chemistry, 2000, 275, 7189-7197.	1.6	31
69	Stress-Induced Activation of c-Jun N-Terminal Kinase in Sensory Ganglion Neurons: Accumulation in Nuclear Domains Enriched in Splicing Factors and Distribution in Perichromatin Fibrils. Experimental Cell Research, 2000, 256, 179-191.	1.2	25
70	Distinct carboxy-termini confer divergent characteristics to the mitogen-activated protein kinase p38α and its splice isoform Mxi2. FEBS Letters, 2000, 474, 169-174.	1.3	24
71	Signal transduction elements of TC21, an oncogenic member of the R-Ras subfamily of GTP-binding proteins. Oncogene, 1999, 18, 5860-5869.	2.6	47
72	Identification and Chromosomal Location of Two Human Genes Encoding Enzymes Potentially Involved in Proteolytic Maturation of Farnesylated Proteins. Genomics, 1999, 58, 270-280.	1.3	55

#	Article	IF	CITATIONS
73	Transforming G Protein-Coupled Receptors Block Insulin andras-Induced Adipocytic Differentiation in 3T3-L1 Cells: Evidence for a PKC and MAP Kinase Independent Pathway. Biochemical and Biophysical Research Communications, 1998, 245, 554-561.	1.0	6
74	Linkage of G Protein-Coupled Receptors to the MAPK Signaling Pathway Through PI 3-Kinase Â. Science, 1997, 275, 394-397.	6.0	671
75	The pathway connecting m2 receptors to the nucleus involves small GTP-binding proteins acting on divergent map kinase cascades. Life Sciences, 1997, 60, 999-1006.	2.0	19
76	Cbl-b, a member of the Sli-1/c-Cbl protein family, inhibits Vav-mediated c-Jun N-terminal kinase activation. Oncogene, 1997, 15, 2511-2520.	2.6	87
77	Phosphotyrosine-dependent activation of Rac-1 GDP/GTP exchange by the vav proto-oncogene product. Nature, 1997, 385, 169-172.	13.7	736
78	Protein kinase C-zeta reverts v-raf transformation of NIH-3T3 cells Genes and Development, 1996, 10, 1455-1466.	2.7	36
79	The Small GTP-binding Protein Rho Activates c-Jun N-terminal Kinases/Stress-activated Protein Kinases in Human Kidney 293T Cells. Journal of Biological Chemistry, 1996, 271, 25731-25734.	1.6	157
80	Dual Effect of β-Adrenergic Receptors on Mitogen-activated Protein Kinase. Journal of Biological Chemistry, 1995, 270, 25259-25265.	1.6	214
81	Overexpression of Mammalian Protein Kinase C-ζ Does Not Affect the Growth Characteristics of NIH 3T3 Cells. Biochemical and Biophysical Research Communications, 1995, 213, 266-272.	1.0	23
82	The small GTP-binding proteins Rac1 and Cdc42regulate the activity of the JNK/SAPK signaling pathway. Cell, 1995, 81, 1137-1146.	13.5	1,668
83	Expression of apolipoprotein e in cholesterol-loaded macrophages of extrahepatic tissues during experimental hypercholesterolemia. Life Sciences, 1995, 56, 1865-1875.	2.0	5
84	Ras-dependent activation of MAP kinase pathway mediated by G-protein Î ² Î ³ subunits. Nature, 1994, 369, 418-420.	13.7	816
85	Apolipoprotein E expression in the cerebellum of normal and hypercholesterolemic rabbits. Molecular Brain Research, 1994, 21, 115-123.	2.5	10
86	Induction of apolipoprotein E expression during erythroid differentiation of human K562 leukemia cells. Leukemia Research, 1993, 17, 771-776.	0.4	3
87	Hypercholesterolemia induces differential expression of rabbit apolipoprotein A and C genes. Atherosclerosis, 1992, 95, 95-103.	0.4	8
88	Downregulation of hepatic albumin mRNA in response to induced hypercholesterolemia in rabbits. Lipids and Lipid Metabolism, 1992, 1128, 77-82.	2.6	1
89	Foam cells from aorta and spleen overexpress apolipoprotein E in the absence of hypercholesterolemia. Biochemical and Biophysical Research Communications, 1992, 183, 514-523.	1.0	11
90	Induction of apolipoprotein E gene expression in human and experimental atherosclerotic lesions. Biochemical and Biophysical Research Communications, 1990, 168, 733-740.	1.0	23

#	Article	IF	CITATIONS
91	Analysis of IncF plasmids evolution: nucleotide sequence of an IncFIII replication region. Gene, 1989, 78, 183-187.	1.0	16