Justo Lobato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8533602/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrochemical oxidation of phenolic wastes with boron-doped diamond anodes. Water Research, 2005, 39, 2687-2703.	5.3	354
2	Production of electricity from the treatment of urban waste water using a microbial fuel cell. Journal of Power Sources, 2007, 169, 198-204.	4.0	217
3	Improved polybenzimidazole films for H3PO4-doped PBI-based high temperature PEMFC. Journal of Membrane Science, 2007, 306, 47-55.	4.1	211
4	Electrochemical Treatment of 4-Nitrophenol-Containing Aqueous Wastes Using Boron-Doped Diamond Anodes. Industrial & Engineering Chemistry Research, 2004, 43, 1944-1951.	1.8	208
5	Electrodissolution of Aluminum Electrodes in Electrocoagulation Processes. Industrial & Engineering Chemistry Research, 2005, 44, 4178-4185.	1.8	205
6	Is microbial fuel cell technology ready? An economic answer towards industrial commercialization. Applied Energy, 2017, 185, 698-707.	5.1	201
7	Coagulation and Electrocoagulation of Wastes Polluted with Dyes. Environmental Science & Technology, 2006, 40, 6418-6424.	4.6	198
8	Synthesis and characterisation of poly[2,2-(m-phenylene)-5,5-bibenzimidazole] as polymer electrolyte membrane for high temperature PEMFCs. Journal of Membrane Science, 2006, 280, 351-362.	4.1	197
9	Electrochemical Oxidation of Hydroquinone, Resorcinol, and Catechol on Boron-Doped Diamond Anodes. Environmental Science & Technology, 2005, 39, 7234-7239.	4.6	181
10	Advanced oxidation processes for the treatment of olive-oil mills wastewater. Chemosphere, 2007, 67, 832-838.	4.2	167
11	Microbial fuel cell with an algae-assisted cathode: A preliminary assessment. Journal of Power Sources, 2013, 242, 638-645.	4.0	167
12	Study of the influence of the amount of PBI–H3PO4 in the catalytic layer of a high temperature PEMFC. International Journal of Hydrogen Energy, 2010, 35, 1347-1355.	3.8	148
13	PBI-based polymer electrolyte membranes fuel cells. Electrochimica Acta, 2007, 52, 3910-3920.	2.6	143
14	Advanced oxidation processes for the treatment of wastes polluted with azoic dyes. Electrochimica Acta, 2006, 52, 325-331.	2.6	138
15	Short-term effects of temperature and COD in a microbial fuel cell. Applied Energy, 2013, 101, 213-217.	5.1	129
16	Three-dimensional model of a 50Âcm2 high temperature PEM fuel cell. Study of the flow channel geometry influence. International Journal of Hydrogen Energy, 2010, 35, 5510-5520.	3.8	123
17	Electrochemical treatment of 2,4-dinitrophenol aqueous wastes using boron-doped diamond anodes. Electrochimica Acta, 2004, 49, 4641-4650.	2.6	122
18	Electrochemical Oxidation of Azoic Dyes with Conductive-Diamond Anodes. Industrial & Engineering Chemistry Research, 2006, 45, 3468-3473.	1.8	121

#	Article	IF	CITATIONS
19	Influence of the Teflon loading in the gas diffusion layer of PBI-based PEM fuel cells. Journal of Applied Electrochemistry, 2008, 38, 793-802.	1.5	121
20	Electrochemical Synthesis of Peroxodiphosphate Using Boron-Doped Diamond Anodes. Journal of the Electrochemical Society, 2005, 152, D191.	1.3	114
21	Measurement of Mass-Transfer Coefficients by an Electrochemical Technique. Journal of Chemical Education, 2006, 83, 1204.	1.1	114
22	Electrochemical Oxidation of Aqueous Carboxylic Acid Wastes Using Diamond Thin-Film Electrodes. Industrial & Engineering Chemistry Research, 2003, 42, 956-962.	1.8	104
23	Treatment of Fenton-refractory olive oil mill wastes by electrochemical oxidation with boron-doped diamond anodes. Journal of Chemical Technology and Biotechnology, 2006, 81, 1331-1337.	1.6	96
24	A novel titanium PBI-based composite membrane for high temperature PEMFCs. Journal of Membrane Science, 2011, 369, 105-111.	4.1	96
25	Lagooning microbial fuel cells: A first approach by coupling electricity-producing microorganisms and algae. Applied Energy, 2013, 110, 220-226.	5.1	96
26	Titanium composite PBI-based membranes for high temperature polymer electrolyte membrane fuel cells. Effect on titanium dioxide amount. RSC Advances, 2012, 2, 1547-1556.	1.7	94
27	From biomass to pure hydrogen: Electrochemical reforming of bio-ethanol in a PEM electrolyser. Applied Catalysis B: Environmental, 2013, 134-135, 302-309.	10.8	93
28	Break-up of oil-in-water emulsions by electrochemical techniques. Journal of Hazardous Materials, 2007, 145, 233-240.	6.5	89
29	Environmental applications of electrochemical technology. What is needed to enable full-scale applications?. Current Opinion in Electrochemistry, 2019, 16, 149-156.	2.5	87
30	Electrochemical Oxidation of Polyhydroxybenzenes on Boron-Doped Diamond Anodes. Industrial & Engineering Chemistry Research, 2004, 43, 6629-6637.	1.8	85
31	Modeling of Wastewater Electro-oxidation Processes Part I. General Description and Application to Inactive Electrodes. Industrial & Engineering Chemistry Research, 2004, 43, 1915-1922.	1.8	85
32	Effect of the catalytic ink preparation method on the performance of high temperature polymer electrolyte membrane fuel cells. Journal of Power Sources, 2006, 157, 284-292.	4.0	85
33	Electrochemical treatment of the effluent of a fine chemical manufacturing plant. Journal of Hazardous Materials, 2006, 138, 173-181.	6.5	83
34	Effect of the Operating Conditions on the Oxidation Mechanisms in Conductive-Diamond Electrolyses. Journal of the Electrochemical Society, 2007, 154, E37.	1.3	83
35	Comparison of the Aluminum Speciation in Chemical and Electrochemical Dosing Processes. Industrial & amp; Engineering Chemistry Research, 2006, 45, 8749-8756.	1.8	79
36	Enhancement of the fuel cell performance of a high temperature proton exchange membrane fuel cell running with titanium composite polybenzimidazole-based membranes. Journal of Power Sources, 2011, 196, 8265-8271.	4.0	78

#	Article	IF	CITATIONS
37	Performance of a Vapor-Fed Polybenzimidazole (PBI)-Based Direct Methanol Fuel Cell. Energy & Fuels, 2008, 22, 3335-3345.	2.5	76
38	Long-term testing of a high-temperature proton exchange membrane fuel cell short stack operated with improved polybenzimidazole-based composite membranes. Journal of Power Sources, 2015, 274, 177-185.	4.0	74
39	Study of the acclimation stage and of the effect of the biodegradability on the performance of a microbial fuel cell. Bioresource Technology, 2009, 100, 4704-4710.	4.8	70
40	Study of the Catalytic Layer in Polybenzimidazoleâ€based High Temperature PEMFC: Effect of Platinum Content on the Carbon Support. Fuel Cells, 2010, 10, 312-319.	1.5	67
41	Continuous Electrocoagulation of Synthetic Colloid-Polluted Wastes. Industrial & Engineering Chemistry Research, 2005, 44, 8171-8177.	1.8	66
42	Study of flow channel geometry using current distribution measurement in a high temperature polymer electrolyte membrane fuel cell. Journal of Power Sources, 2011, 196, 4209-4217.	4.0	64
43	Electrochemical treatment of diluted cyanide aqueous wastes. Journal of Chemical Technology and Biotechnology, 2005, 80, 565-573.	1.6	58
44	Effect of the electron-acceptors on the performance of a MFC. Bioresource Technology, 2010, 101, 7014-7018.	4.8	53
45	Influence of the fuel and dosage on the performance of double-compartment microbial fuel cells. Water Research, 2016, 99, 16-23.	5.3	53
46	Modeling of Wastewater Electro-oxidation Processes Part II. Application to Active Electrodes. Industrial & Engineering Chemistry Research, 2004, 43, 1923-1931.	1.8	52
47	Selection of cheap electrodes for two-compartment microbial fuel cells. Journal of Electroanalytical Chemistry, 2017, 785, 235-240.	1.9	51
48	Characterization of light/dark cycle and long-term performance test in a photosynthetic microbial fuel cell. Fuel, 2015, 140, 209-216.	3.4	50
49	Promising TiOSO ₄ Composite Polybenzimidazoleâ€Based Membranes for High Temperature PEMFCs. ChemSusChem, 2011, 4, 1489-1497.	3.6	45
50	The neural networks based modeling of a polybenzimidazole-based polymer electrolyte membrane fuel cell: Effect of temperature. Journal of Power Sources, 2009, 192, 190-194.	4.0	44
51	Optimisation of the Microporous Layer for a Polybenzimidazoleâ€Based High Temperature PEMFC – Effect of Carbon Content. Fuel Cells, 2010, 10, 770-777.	1.5	44
52	Review of Anodic Catalysts for SO2 Depolarized Electrolysis for "Green Hydrogen―Production. Catalysts, 2019, 9, 63.	1.6	44
53	Enhancement of high temperature PEMFC stability using catalysts based on Pt supported on SiC based materials. Applied Catalysis B: Environmental, 2016, 198, 516-524.	10.8	42
54	Electrochemically Assisted Coagulation of Wastes Polluted with Eriochrome Black T. Industrial & Engineering Chemistry Research, 2006, 45, 3474-3480.	1.8	41

#	Article	IF	CITATIONS
55	Combined adsorption and electrochemical processes for the treatment of acidic aqueous phenol wastes. Journal of Applied Electrochemistry, 2004, 34, 111-117.	1.5	40
56	An evaluation of aerobic and anaerobic sludges as start-up material for microbial fuel cell systems. New Biotechnology, 2012, 29, 415-420.	2.4	40
57	Modelling of wastewater electrocoagulation processesPart I. General description and application to kaolin-polluted wastewaters. Separation and Purification Technology, 2008, 60, 155-161.	3.9	39
58	Detoxification of synthetic industrial wastewaters using electrochemical oxidation with boron-doped diamond anodes. Journal of Chemical Technology and Biotechnology, 2006, 81, 352-358.	1.6	38
59	Study of different bimetallic anodic catalysts supported on carbon for a high temperature polybenzimidazole-based direct ethanol fuel cell. Applied Catalysis B: Environmental, 2009, 91, 269-274.	10.8	37
60	Study of a photosynthetic MFC for energy recovery from synthetic industrial fruit juice wastewater. International Journal of Hydrogen Energy, 2014, 39, 21828-21836.	3.8	37
61	Environmental and Preliminary Cost Assessments of Redox Flow Batteries for Renewable Energy Storage. Energy Technology, 2020, 8, 1900914.	1.8	37
62	A comparison of hydrogen cloud explosion models and the study of the vulnerability of the damage caused by an explosion of H2H2. International Journal of Hydrogen Energy, 2006, 31, 1780-1790.	3.8	36
63	Towards the scale-up of bioelectrogenic technology: stacking microbial fuel cells to produce larger amounts of electricity. Journal of Applied Electrochemistry, 2017, 47, 1115-1125.	1.5	35
64	Influence of the ion-exchange membrane on the performance of double-compartment microbial fuel cells. Journal of Electroanalytical Chemistry, 2018, 808, 427-432.	1.9	35
65	Scale-up of a high temperature polymer electrolyte membrane fuel cell based on polybenzimidazole. Journal of Power Sources, 2011, 196, 4306-4313.	4.0	34
66	Modelling of wastewater electrocoagulation processesPart II: Application to dye-polluted wastewaters and oil-in-water emulsions. Separation and Purification Technology, 2008, 60, 147-154.	3.9	32
67	Performance of a vanadium redox flow battery for the storage of electricity produced in photovoltaic solar panels. Renewable Energy, 2017, 114, 1123-1133.	4.3	32
68	Coagulation and Electrocoagulation of Wastes Polluted with Colloids. Separation Science and Technology, 2007, 42, 2157-2175.	1.3	31
69	Improving of Micro Porous Layer based on Advanced Carbon Materials for High Temperature Proton Exchange Membrane Fuel Cell Electrodes. Fuel Cells, 2015, 15, 375-383.	1.5	31
70	Enhancement of Electrode Stability Using Platinum–Cobalt Nanocrystals on a Novel Composite SiCTiC Support. ACS Applied Materials & Interfaces, 2017, 9, 5927-5936.	4.0	31
71	Testing a Vapourâ€fed PBIâ€based Direct Ethanol Fuel Cell. Fuel Cells, 2009, 9, 597-604.	1.5	30
72	Operating the CabECO® membrane electrolytic technology in continuous mode for the direct disinfection of highly fecal-polluted water. Separation and Purification Technology, 2019, 208, 110-115.	3.9	30

#	Article	IF	CITATIONS
73	Vanadium redox flow batteries for the storage of electricity produced in wind turbines. International Journal of Energy Research, 2018, 42, 720-730.	2.2	29
74	Direct and inverse neural networks modelling applied to study the influence of the gas diffusion layer properties on PBI-based PEM fuel cells. International Journal of Hydrogen Energy, 2010, 35, 7889-7897.	3.8	28
75	Electricity production by integration of acidogenic fermentation of fruit juice wastewater and fuel cells. International Journal of Hydrogen Energy, 2012, 37, 9028-9037.	3.8	28
76	Electro-disinfection with BDD-electrodes featuring PEM technology. Separation and Purification Technology, 2020, 248, 117081.	3.9	28
77	Synthesis of crystalline δ-Na2Si2O5 from sodium silicate solution for use as a builder in detergents. Chemical Engineering Science, 2002, 57, 479-486.	1.9	27
78	Microporous layer based on SiC for high temperature proton exchange membrane fuel cells. Journal of Power Sources, 2015, 288, 288-295.	4.0	27
79	Testing the use of cells equipped with solid polymer electrolytes for electro-disinfection. Science of the Total Environment, 2020, 725, 138379.	3.9	26
80	Bioelectricity generation in a self-sustainable Microbial Solar Cell. Bioresource Technology, 2014, 159, 451-454.	4.8	24
81	Composite Titanium Silicon Carbide as a Promising Catalyst Support for Highâ€Temperature Protonâ€Exchange Membrane Fuel Cell Electrodes. ChemCatChem, 2016, 8, 848-854.	1.8	24
82	Powering with Solar Energy the Anodic Oxidation of Wastewater Polluted with Pesticides. ACS Sustainable Chemistry and Engineering, 2019, 7, 8303-8309.	3.2	24
83	Strategies for powering electrokinetic soil remediation: A way to optimize performance of the environmental technology. Journal of Environmental Management, 2020, 267, 110665.	3.8	24
84	Bioelectro-Claus processes using MFC technology: Influence of co-substrate. Bioresource Technology, 2015, 189, 94-98.	4.8	23
85	Improved Electrodes for High Temperature Proton Exchange Membrane Fuel Cells using Carbon Nanospheres. ChemSusChem, 2016, 9, 1187-1193.	3.6	23
86	An easy parameter estimation procedure for modeling a HT-PEMFC. International Journal of Hydrogen Energy, 2012, 37, 11308-11320.	3.8	22
87	Mass transfer characteristics of cross-corrugated membranes. Desalination, 2002, 146, 255-258.	4.0	21
88	Mass Transport in Cross-Corrugated Membranes and the Influence of TiO2for Separation Processes. Industrial & Engineering Chemistry Research, 2003, 42, 5697-5701.	1.8	21
89	Life test of a high temperature PEM fuel cell prepared by electrospray. International Journal of Hydrogen Energy, 2016, 41, 20294-20304.	3.8	19
90	Impact of carbonaceous particles concentration in a nanofluidic electrolyte for vanadium redox flow batteries. Carbon, 2020, 156, 287-298.	5.4	19

#	Article	IF	CITATIONS
91	Durability study of HTPEMFC through current distribution measurements and the application of a model. International Journal of Hydrogen Energy, 2014, 39, 21678-21687.	3.8	17
92	SiCTiC as catalyst support for HT-PEMFCs. Influence of Ti content. Applied Catalysis B: Environmental, 2017, 207, 244-254.	10.8	17
93	Towards the sustainable powering of the electrocoagulation of wastewater through the use of solar-vanadium redox flow battery: A first approach. Electrochimica Acta, 2018, 270, 14-21.	2.6	17
94	Improving sustainability of electrolytic wastewater treatment processes by green powering. Science of the Total Environment, 2021, 754, 142230.	3.9	17
95	Platinum Recovery Techniques for a Circular Economy. Catalysts, 2021, 11, 937. Application of <mml:math <="" altimg="si87.gif" display="inline" overflow="scroll" td=""><td>1.6</td><td>17</td></mml:math>	1.6	17
96	xmlns:xocs= http://www.elsevier.com/xml/xocs/dtd xmlns:xs= http://www.ws.org/2001/xML3chema xmlns:xsi="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd"	1.9	16
97	C Recent Progress in Catalysts for Hydrogen-Chlorine Regenerative Fuel Cells. Catalysts, 2020, 10, 1263.	1.6	16
98	Toward more sustainable photovoltaic solar electrochemical oxidation treatments: Influence of hydraulic and electrical distribution. Journal of Environmental Management, 2021, 285, 112064.	3.8	16
99	Synthesis of Crystalline Layered Sodium Silicate from Amorphous Silicate for Use in Detergents. Industrial & Engineering Chemistry Research, 2000, 39, 1249-1255.	1.8	15
100	Life study of a PBI-PEM fuel cell by current distribution measurement. Journal of Applied Electrochemistry, 2012, 42, 711-718.	1.5	15
101	Determination of a Mass-Transfer Coefficient Using the Limiting-Current Technique. The Chemical Educator, 2002, 7, 214-219.	0.0	14
102	Testing PtRu/CNF catalysts for a high temperature polybenzimidazole-based direct ethanol fuel cell. Effect of metal content. Applied Catalysis B: Environmental, 2011, 106, 174-174.	10.8	14
103	Effects of External Resistance on Microbial Fuel Cell's Performance. Handbook of Environmental Chemistry, 2014, , 175-197.	0.2	14
104	Improving a Redox Flow Battery Working under Realistic Conditions by Using of Graphene based Nanofluids. ChemistrySelect, 2017, 2, 8446-8450.	0.7	14
105	Energy recovery of biogas from juice wastewater through a short high temperature PEMFC stack. International Journal of Hydrogen Energy, 2014, 39, 6937-6943.	3.8	13
106	Longâ€ŧerm effects of the transient COD concentration on the performance of microbial fuel cells. Biotechnology Progress, 2016, 32, 883-890.	1.3	13
107	Prediction and management of solar energy to power electrochemical processes for the treatment of wastewater effluents. Electrochimica Acta, 2020, 335, 135594.	2.6	13
108	Storage of energy using a gas-liquid H2/Cl2 fuel cell: A first approach to electrochemically-assisted absorbers. Chemosphere, 2020, 254, 126795.	4.2	13

#	Article	IF	CITATIONS
109	Comparative Study of the Solubility of the Crystalline Layered Silicates α-Na2Si2O5and δ-Na2Si2O5and the Amorphous Silicate Na2Si2O5. Industrial & Engineering Chemistry Research, 2004, 43, 1472-1477.	1.8	12
110	Pre-disinfection columns to improve the performance of the direct electro-disinfection of highly faecal-polluted surface water. Journal of Environmental Management, 2018, 222, 135-140.	3.8	12
111	Production of value-added substances from the electrochemical oxidation of volatile organic compounds in methanol medium. Chemical Engineering Journal, 2022, 440, 135803.	6.6	12
112	Highly Efficient Electrochemical Production of Hydrogen Peroxide Using the GDE Technology. Industrial & Engineering Chemistry Research, 2022, 61, 10660-10669.	1.8	12
113	Synthesis and characterization of Pt on novel catalyst supports for the H2 production in the Westinghouse cycle. International Journal of Hydrogen Energy, 2020, 45, 25672-25680.	3.8	11
114	How to avoid the formation of hazardous chlorates and perchlorates during electro-disinfection with diamond anodes?. Journal of Environmental Management, 2020, 265, 110566.	3.8	11
115	Electrolytic removal of volatile organic compounds: Keys to understand the process. Journal of Electroanalytical Chemistry, 2022, 912, 116259.	1.9	11
116	Management of solar energy to power electrochemical wastewater treatments. Journal of Water Process Engineering, 2021, 41, 102056.	2.6	10
117	Effect of the Particle Size of Starting Materials on the Synthesis of Crystalline Layered Sodium Silicate for Use in Detergents. Industrial & Engineering Chemistry Research, 2001, 40, 2580-2585.	1.8	9
118	Algal biomass as fuel for stackedâ€MFCs for profitable, sustainable and carbon neutral bioenergy generation. Journal of Chemical Technology and Biotechnology, 2018, 93, 287-293.	1.6	9
119	Effect of the anode composition on the performance of reversible chlor-alkali electro-absorption cells. Separation and Purification Technology, 2020, 248, 117017.	3.9	9
120	Modelling of the treatment of wastewater by photovoltaic solar electrochemical oxidation (PSEO) assisted by redox-flow batteries. Journal of Water Process Engineering, 2021, 40, 101974.	2.6	9
121	Characterization of PBI/Graphene Oxide Composite Membranes for the SO2 Depolarized Electrolysis at High Temperature. Membranes, 2022, 12, 116.	1.4	9
122	Neuro-evolutionary approach applied for optimizing the PEMFC performance. International Journal of Hydrogen Energy, 2014, 39, 4037-4043.	3.8	8
123	High‧tability Electrodes for Highâ€Temperature Proton Exchange Membrane Fuel Cells by Using Advanced Nanocarbonaceous Materials. ChemElectroChem, 2017, 4, 3288-3295.	1.7	8
124	First approaches for hydrogen production by the depolarized electrolysis of SO2 using phosphoric acid doped polybenzimidazole membranes. International Journal of Hydrogen Energy, 2021, 46, 29763-29773.	3.8	8
125	Scale-up in PEM electro-ozonizers for the degradation of organics. Separation and Purification Technology, 2022, 284, 120261.	3.9	8
126	Electrospray Deposition of Catalyst Layers with Ultralow Pt Loading for Cost-Effective H ₂ Production by SO ₂ Electrolysis. ACS Applied Energy Materials, 2022, 5, 2138-2149.	2.5	8

#	Article	IF	CITATIONS
127	Enhancement of SO2 high temperature depolarized electrolysis by means of graphene oxide composite polybenzimidazole membranes. Journal of Cleaner Production, 2022, 363, 132372.	4.6	7
128	Retention Capacity of the Builder δ-Na2Si2O5. Modeling the Ca2+/Mg2+/Na+Equilibrium. Industrial & Engineering Chemistry Research, 2003, 42, 3257-3262.	1.8	6
129	Microbial Fuel Cell: The Definitive Technological Approach for Valorizing Organic Wastes. Handbook of Environmental Chemistry, 2014, , 287-316.	0.2	6
130	Thermally-treated algal suspensions as fuel for microbial fuel cells. Journal of Electroanalytical Chemistry, 2018, 814, 77-82.	1.9	6
131	Influence of hydraulic retention time and carbon loading rate on the production of algae. Journal of Biotechnology, 2018, 282, 70-79.	1.9	6
132	Influence of the initial sludge characteristics and acclimation on the long-term performance of double-compartment acetate-fed microbial fuel cells. Journal of Electroanalytical Chemistry, 2018, 825, 1-7.	1.9	6
133	Chloralkali low temperature PEM reversible electrochemical cells. Electrochimica Acta, 2021, 387, 138542.	2.6	5
134	Using solar power regulation to electrochemically capture carbon dioxide: Process integration and case studies. Energy Reports, 2022, 8, 4957-4963.	2.5	5
135	Influence of current density and inlet gas flow in the treatment of gaseous streams polluted with benzene by electro-absorption. Electrochimica Acta, 2022, 423, 140610.	2.6	5
136	Calculation of Kinetic Parameters for Crystallization Processes. The Chemical Educator, 2002, 7, 19-22.	0.0	4
137	Importance of Electrode Tailoring in the Coupling of Electrolysis with Renewable Energy. ChemElectroChem, 2020, 7, 2925-2932.	1.7	4
138	Electroscrubbers for removing volatile organic compounds and odorous substances from polluted gaseous streams. Current Opinion in Electrochemistry, 2021, 28, 100718.	2.5	4
139	Platinum: A key element in electrode composition for reversible chloralkaline electrochemical cells. International Journal of Hydrogen Energy, 2021, 46, 32602-32611.	3.8	4
140	Towards the Electrochemical Retention of CO ₂ : Is it Worth it?. ChemElectroChem, 2021, 8, 3947-3953.	1.7	4
141	Can the green energies improve the sustainability of electrochemically-assisted soil remediation processes?. Science of the Total Environment, 2022, 803, 149991.	3.9	3
142	PBI-Based Composite Membranes. , 2016, , 275-295.		3
143	Reducción de cromo hexavalente en cementos usando sulfato ferroso mono y heptahidratado: eficacia y almacenabilidad. Materiales De Construccion, 2005, 55, 39-52.	0.2	3
144	Influence of Dispersed Particulates on Mass Transport in Cross-Corrugated Structures. Journal of Applied Electrochemistry, 2004, 34, 631-636.	1.5	1

#	Article	IF	CITATIONS
145	Testing Different Catalysts for a Vapor-Fed PBI-Based Direct Ethanol Fuel Cell. , 2009, , .		1
146	Hydrodynamics and Current Distribution Analysis of Bipolar Plates for Direct Ethanol Fuel Cells. ECS Transactions, 2011, 41, 1909-1925.	0.3	1
147	Evaluation of Goethite as a Catalyst for the Thermal Stage of the Westinghouse Process for Hydrogen Production. Catalysts, 2021, 11, 1145.	1.6	1
148	Adapting the low-cost pre-disinfection column PREDICO for simultaneous softening and disinfection of pore water. Chemosphere, 2022, 287, 132334.	4.2	1
149	Improving stability of chloralkaline high-temperature PBI-PEMFCs. Journal of Electroanalytical Chemistry, 2022, 904, 115940.	1.9	1
150	Modeling of Electrochemical Process for the Treatment of Wastewater Containing Organic Pollutants. , 2010, , 99-124.		0
151	The Gas Diffusion Layer in High Temperature Polymer Electrolyte Membrane Fuel Cells. , 0, , .		Ο