Serena Bernacchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8533579/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Visualization of Retroviral Gag-Genomic RNA Cellular Interactions Leading to Genome Encapsidation and Viral Assembly: An Overview. Viruses, 2022, 14, 324.	3.3	2
2	Post-Translational Modifications of Retroviral HIV-1 Gag Precursors: An Overview of Their Biological Role. International Journal of Molecular Sciences, 2021, 22, 2871.	4.1	10
3	A purine loop and the primer binding site are critical for the selective encapsidation of mouse mammary tumor virus genomic RNA by Pr77Gag. Nucleic Acids Research, 2021, 49, 4668-4688.	14.5	9
4	Identification of Pr78Gag Binding Sites on the Mason-Pfizer Monkey Virus Genomic RNA Packaging Determinants. Journal of Molecular Biology, 2021, 433, 166923.	4.2	7
5	Importance of Viral Late Domains in Budding and Release of Enveloped RNA Viruses. Viruses, 2021, 13, 1559.	3.3	15
6	Zinc Fingers in HIV-1 Gag Precursor Are Not Equivalent for gRNA Recruitment at the Plasma Membrane. Biophysical Journal, 2020, 119, 419-433.	0.5	15
7	Special Issue "Function and Structure of Viral Ribonucleoproteins Complexes― Viruses, 2020, 12, 1355.	3.3	1
8	Analysis of the HIV-1 Genomic RNA Dimerization Initiation Site Binding to Aminoglycoside Antibiotics Using Isothermal Titration Calorimetry. Methods in Molecular Biology, 2020, 2113, 237-250.	0.9	3
9	Dynamic Light Scattering Analysis on RNA Associated to Proteins. Methods in Molecular Biology, 2020, 2113, 31-39.	0.9	1
10	The C-terminal p6 domain of the HIV-1 Pr55 ^{Gag} precursor is required for specific binding to the genomic RNA. RNA Biology, 2018, 15, 923-936.	3.1	37
11	Retroviral RNA Dimerization: From Structure to Functions. Frontiers in Microbiology, 2018, 9, 527.	3.5	67
12	HIV-1 Pr55 ^{Gag} binds genomic and spliced RNAs with different affinity and stoichiometry. RNA Biology, 2017, 14, 90-103.	3.1	55
13	The Life-Cycle of the HIV-1 Gag–RNA Complex. Viruses, 2016, 8, 248.	3.3	80
14	Requirements for nucleocapsid-mediated regulation of reverse transcription during the late steps of HIV-1 assembly. Scientific Reports, 2016, 6, 27536.	3.3	8
15	Mutational interference mapping experiment (MIME) for studying RNA structure and function. Nature Methods, 2015, 12, 866-872.	19.0	63
16	HIV-1 Replication and the Cellular Eukaryotic Translation Apparatus. Viruses, 2015, 7, 199-218.	3.3	45
17	Characterization of RNA binding and chaperoning activities of HIV-1 Vif protein. RNA Biology, 2014, 11, 906-920.	3.1	13
18	Specific recognition of the HIV-1 genomic RNA by the Gag precursor. Nature Communications, 2014, 5, 4304.	12.8	103

SERENA BERNACCHI

#	Article	IF	CITATIONS
19	Dynamic Micelles of Mannoside Glycolipids are more Efficient than Polymers for Inhibiting HIV-1 <i>trans</i> -Infection. Bioconjugate Chemistry, 2013, 24, 1813-1823.	3.6	17
20	APOBEC3G Impairs the Multimerization of the HIV-1 Vif Protein in Living Cells. Journal of Virology, 2013, 87, 6492-6506.	3.4	19
21	The role of Vif oligomerization and RNA chaperone activity in HIV-1 replication. Virus Research, 2012, 169, 361-376.	2.2	13
22	Importance of the proline-rich multimerization domain on the oligomerization and nucleic acid binding properties of HIV-1 Vif. Nucleic Acids Research, 2011, 39, 2404-2415.	14.5	30
23	HIV-1 Vif binds to APOBEC3G mRNA and inhibits its translation. Nucleic Acids Research, 2010, 38, 633-646.	14.5	118
24	Tumultuous Relationship between the Human Immunodeficiency Virus Type 1 Viral Infectivity Factor (Vif) and the Human APOBEC-3G and APOBEC-3F Restriction Factors. Microbiology and Molecular Biology Reviews, 2009, 73, 211-232.	6.6	61
25	RNA and DNA Binding Properties of HIV-1 Vif Protein. Journal of Biological Chemistry, 2007, 282, 26361-26368.	3.4	33
26	Influence of C-5 halogenation of uridines on hairpin versus duplex RNA folding. Rna, 2007, 13, 1445-1452.	3.5	23
27	Aminoglycoside binding to the HIV-1 RNA dimerization initiation site: thermodynamics and effect on the kissing-loop to duplex conversion. Nucleic Acids Research, 2007, 35, 7128-7139.	14.5	55
28	A structure-based approach for targeting the HIV-1 genomic RNA dimerization initiation site. Biochimie, 2007, 89, 1195-1203.	2.6	28
29	Mechanism of Hairpin-Duplex Conversion for the HIV-1 Dimerization Initiation Site. Journal of Biological Chemistry, 2005, 280, 40112-40121.	3.4	44
30	Cooperative and Specific Binding of Vif to the 5′ Region of HIV-1 Genomic RNA. Journal of Molecular Biology, 2005, 354, 55-72.	4.2	46
31	Impact of the Terminal Bulges of HIV-1 cTAR DNA on its Stability and the Destabilizing Activity of the Nucleocapsid Protein NCp7. Journal of Molecular Biology, 2003, 328, 95-108.	4.2	79
32	Excitonic Heterodimer Formation in an HIV-1 Oligonucleotide Labeled with a Donor-Acceptor Pair Used for Fluorescence Resonance Energy Transfer. Biophysical Journal, 2003, 84, 643-654.	0.5	30
33	HIV-1 nucleocapsid protein activates transient melting of least stable parts of the secondary structure of TAR and its complementary sequence. Journal of Molecular Biology, 2002, 317, 385-399.	4.2	132