
Ashkan Nabavi-Pelesaraei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8533043/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Principle of Life Cycle Assessment and Cumulative Exergy Demand for Biodiesel Production: Farm-To-Combustion Approach. Green Energy and Technology, 2022, , 127-169.	0.6	12
2	Potential for optimization of energy consumption and costs in saffron production in central Iran through data envelopment analysis and <scp>multiâ€objective</scp> genetic algorithm. Environmental Progress and Sustainable Energy, 2022, 41, .	2.3	57
3	Principal of environmental life cycle assessment for medical waste during COVID-19 outbreak to support sustainable development goals. Science of the Total Environment, 2022, 827, 154416.	8.0	71
4	Applying novel eco-exergoenvironmental toxicity index to select the best irrigation system of sunflower production. Energy, 2022, 250, 123822.	8.8	54
5	A comparative of modeling techniques and life cycle assessment for prediction of output energy, economic profit, and global warming potential for wheat farms. Energy Reports, 2022, 8, 4922-4934.	5.1	63
6	An analysis of energy use and economic and environmental impacts in conventional tunnel and LED-equipped vertical systems in healing and acclimatization of grafted watermelon seedlings. Journal of Cleaner Production, 2022, 361, 132069.	9.3	50
7	Exergoenvironmental damages assessment of horticultural crops using ReCiPe2016 and cumulative exergy demand frameworks. Journal of Cleaner Production, 2021, 278, 123788.	9.3	86
8	The short-term effects of COVID-19 outbreak on dietary diversity and food security status of Iranian households (A case study in Tehran province). Journal of Cleaner Production, 2021, 281, 124537.	9.3	83
9	Artificial neural networks and adaptive neuro-fuzzy inference system in energy modeling of agricultural products. , 2021, , 299-334.		13
10	Coupled life cycle assessment and data envelopment analysis to optimize energy consumption and mitigate environmental impacts in agricultural production. , 2021, , 227-264.		5
11	Multi-objective optimization of energy use and environmental emissions for walnut production using imperialist competitive algorithm. Applied Energy, 2021, 284, 116342.	10.1	99
12	Prospects of solar systems in production chain of sunflower oil using cold press method with concentrating energy and life cycle assessment. Energy, 2021, 223, 120117.	8.8	81
13	Understanding farm-level differences in environmental impact and eco-efficiency: The case of rice production in Iran. Sustainable Production and Consumption, 2021, 27, 1021-1029.	11.0	76
14	Application of photovoltaic system to modify energy use, environmental damages and cumulative exergy demand of two irrigation systems-A case study: Barley production of Iran. Renewable Energy, 2020, 160, 1316-1334.	8.9	120
15	Data supporting midpoint-weighting life cycle assessment and energy forms of cumulative exergy demand for horticultural crops. Data in Brief, 2020, 33, 106490.	1.0	49
16	Exergoenvironmental-Life cycle cost analysis for conventional, low external input and organic systems of rice paddy production. Journal of Cleaner Production, 2020, 263, 121529.	9.3	100
17	Energy optimization and greenhouse gas emissions mitigation for agricultural and horticultural systems in Northern Iran. Energy, 2019, 186, 115845.	8.8	78
18	Energy-Life cycle assessment on applying solar technologies for greenhouse strawberry production. Renewable and Sustainable Energy Reviews, 2019, 116, 109411.	16.4	126

#	Article	IF	CITATIONS
19	Comprehensive model of energy, environmental impacts and economic in rice milling factories by coupling adaptive neuro-fuzzy inference system and life cycle assessment. Journal of Cleaner Production, 2019, 217, 742-756.	9.3	87
20	Use of optimization techniques for energy use efficiency and environmental life cycle assessment modification in sugarcane production. Energy, 2019, 181, 1298-1320.	8.8	112
21	Combined life cycle assessment and artificial intelligence for prediction of output energy and environmental impacts of sugarcane production. Science of the Total Environment, 2019, 664, 1005-1019.	8.0	200
22	Assessment of optimized pattern in milling factories of rice production based on energy, environmental and economic objectives. Energy, 2019, 169, 1259-1273.	8.8	65
23	Life Cycle Assessment (LCA) Approach to Evaluate Different Waste Management Opportunities. , 2019, , 195-216.		16
24	Evaluation of the Environmental Impact of Industrial and Traditional Broiler Chicken Production by Using Life Cycle Assessment. Research on Animal Production, 2019, 10, 64-74.	0.0	0
25	Integration of artificial intelligence methods and life cycle assessment to predict energy output and environmental impacts of paddy production. Science of the Total Environment, 2018, 631-632, 1279-1294.	8.0	147
26	Optimization of energy consumption of dairy farms using data envelopment analysis – A case study: Qazvin city of Iran. Journal of the Saudi Society of Agricultural Sciences, 2018, 17, 217-228.	1.9	18
27	Application of data envelopment analysis approach for optimization of energy use and reduction of greenhouse gas emission in peanut production of Iran. Journal of Cleaner Production, 2018, 172, 1327-1335.	9.3	86
28	Modeling of energy consumption and environmental life cycle assessment for incineration and landfill systems of municipal solid waste management - A case study in Tehran Metropolis of Iran. Journal of Cleaner Production, 2017, 148, 427-440.	9.3	345
29	Applying data envelopment analysis to evaluation of energy efficiency and decreasing of greenhouse gas emissions of fattening farms. Energy, 2017, 120, 652-662.	8.8	47
30	Energy consumption enhancement and environmental life cycle assessment in paddy production using optimization techniques. Journal of Cleaner Production, 2017, 162, 571-586.	9.3	96
31	Environmental management of tea production using joint of life cycle assessment and data envelopment analysis approaches. Environmental Progress and Sustainable Energy, 2017, 36, 1116-1122.	2.3	69
32	Prognostication of energy use and environmental impacts for recycle system of municipal solid waste management. Journal of Cleaner Production, 2017, 154, 602-613.	9.3	93
33	Investigations of energy consumption and greenhouse gas emissions of fattening farms using artificial intelligence methods. Environmental Progress and Sustainable Energy, 2017, 36, 1546-1559.	2.3	15
34	Neural network modeling of energy use and greenhouse gas emissions of watermelon production systems. Journal of the Saudi Society of Agricultural Sciences, 2016, 15, 38-47.	1.9	33
35	Applying optimization techniques to improve of energy efficiency and GHG (greenhouse gas) emissions of wheat production. Energy, 2016, 103, 672-678.	8.8	85
36	Analytical investigation of the effects of dam construction on the productivity and efficiency of farmers. Journal of Cleaner Production, 2016, 135, 549-557.	9.3	44

#	Article	IF	CITATIONS
37	Determination of efficient and inefficient units for watermelon production-a case study: Guilan province of Iran. Journal of the Saudi Society of Agricultural Sciences, 2016, 15, 162-170.	1.9	17
38	Modeling energy consumption and greenhouse gas emissions for kiwifruit production using artificial neural networks. Journal of Cleaner Production, 2016, 133, 924-931.	9.3	59
39	Resource management in cropping systems using artificial intelligence techniques: a case study of orange orchards in north of Iran. Stochastic Environmental Research and Risk Assessment, 2016, 30, 413-427.	4.0	45
40	Gate to gate life cycle assessment of flat pressed particleboard production in Islamic Republic of Iran. Journal of Cleaner Production, 2016, 112, 343-350.	9.3	77
41	Optimization of energy required and greenhouse gas emissions analysis for orange producers using data envelopment analysis approach. Journal of Cleaner Production, 2014, 65, 311-317.	9.3	138
42	Applying data envelopment analysis approach to improve energy efficiency and reduce greenhouse gas emission of rice production. Engineering in Agriculture, Environment and Food, 2014, 7, 155-162.	0.5	48