Maria Sanchez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8532967/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent progress in research on tungsten materials for nuclear fusion applications in Europe. Journal of Nuclear Materials, 2013, 432, 482-500.	2.7	610
2	Advantages and disadvantages of the addition of graphene nanoplatelets to epoxy resins. European Polymer Journal, 2014, 61, 206-214.	5.4	176
3	Effect of the carbon nanotube functionalization on flexural properties of multiscale carbon fiber/epoxy composites manufactured by VARIM. Composites Part B: Engineering, 2013, 45, 1613-1619.	12.0	139
4	Electroless nickel coated short carbon fibres in aluminium matrix composites. Composites Part A: Applied Science and Manufacturing, 2007, 38, 566-575.	7.6	114
5	Characterization of interfacial mechanical properties in carbon fiber/aluminium matrix composites by the nanoindentation technique. Composites Science and Technology, 2005, 65, 2025-2038.	7.8	108
6	Strain monitoring mechanisms of sensors based on the addition of graphene nanoplatelets into an epoxy matrix. Composites Science and Technology, 2016, 123, 65-70.	7.8	97
7	Morphological changes on graphene nanoplatelets induced during dispersion into an epoxy resin by different methods. Composites Part B: Engineering, 2015, 72, 199-205.	12.0	96
8	A brief summary of the progress on the EFDA tungsten materials program. Journal of Nuclear Materials, 2013, 442, S173-S180.	2.7	69
9	Effect of copper electroless coatings on the interaction between a molten Al–Si–Mg alloy and coated short carbon fibres. Composites Part A: Applied Science and Manufacturing, 2007, 38, 1947-1956.	7.6	68
10	Thermal conductivity and lap shear strength of GNP/epoxy nanocomposites adhesives. International Journal of Adhesion and Adhesives, 2016, 68, 407-410.	2.9	68
11	Critical parameters of carbon nanotube reinforced composites for structural health monitoring applications: Empirical results versus theoretical predictions. Composites Science and Technology, 2019, 171, 44-53.	7.8	67
12	Effect of reinforcement coatings on the dry sliding wear behaviour of aluminium/SiC particles/carbon fibres hybrid composites. Wear, 2009, 266, 1128-1136.	3.1	66
13	Characterization of carbon nanofiber/epoxy nanocomposites by the nanoindentation technique. Composites Part B: Engineering, 2011, 42, 638-644.	12.0	62
14	Fabrication of aluminium composites reinforced with carbon fibres by a centrifugal infiltration process. Composites Part A: Applied Science and Manufacturing, 2010, 41, 1605-1611.	7.6	61
15	Graphene nanoplatelets coated glass fibre fabrics as strain sensors. Composites Science and Technology, 2017, 146, 59-64.	7.8	57
16	Electrically conductive functionalized-GNP/epoxy based composites: From nanocomposite to multiscale glass fibre composite material. Composites Part B: Engineering, 2016, 98, 49-55.	12.0	49
17	A proof of concept of a structural supercapacitor made of graphene coated woven carbon fibers: EIS study and mechanical performance. Electrochimica Acta, 2021, 370, 137746.	5.2	42
18	Novel approach to percolation threshold on electrical conductivity of carbon nanotube reinforced nanocomposites. RSC Advances, 2016, 6, 43418-43428.	3.6	37

#	Article	IF	CITATIONS
19	Influence of the functionalization of carbon nanotubes on calendering dispersion effectiveness in a low viscosity resin for VARIM processes. Composites Part B: Engineering, 2012, 43, 3482-3490.	12.0	36
20	Evaluation of mechanically alloyed Cu-based powders as filler alloy for brazing tungsten to a reduced activation ferritic-martensitic steel. Journal of Nuclear Materials, 2017, 490, 188-196.	2.7	36
21	The influence of mechanical dispersion of MWCNT in epoxy matrix by calendering method: Batch method versus time controlled. Composites Part B: Engineering, 2013, 48, 88-94.	12.0	34
22	Effect of graphene nanoplatelets thickness on strain sensitivity of nanocomposites: A deeper theoretical to experimental analysis. Composites Science and Technology, 2019, 181, 107697.	7.8	33
23	Epoxy Adhesives Modified with Graphene for Thermal Interface Materials. Journal of Adhesion, 2014, 90, 835-847.	3.0	31
24	Sensitivity, influence of the strain rate and reversibility of GNPs based multiscale composite materials for high sensitive strain sensors. Composites Science and Technology, 2018, 155, 100-107.	7.8	29
25	Self-stratifying and orientation of exfoliated few-layer graphene nanoplatelets in epoxy composites. Composites Science and Technology, 2013, 85, 136-141.	7.8	28
26	Effect of brazing temperature, filler thickness and post brazing heat treatment on the microstructure and mechanical properties of W-Eurofer joints brazed with Cu interlayers. Journal of Nuclear Materials, 2020, 533, 152117.	2.7	28
27	Study of a novel brazing process for W-W joints in fusion applications. Materials and Design, 2016, 112, 117-123.	7.0	27
28	High sensitive damage sensors based on the use of functionalized graphene nanoplatelets coated fabrics as reinforcement in multiscale composite materials. Composites Part B: Engineering, 2018, 149, 31-37.	12.0	27
29	Wettability study of a Cu-Ti alloy on tungsten and EUROFER substrates for brazing components of DEMO fusion reactor. Materials and Design, 2016, 99, 93-101.	7.0	26
30	Dispersion of carbon nanofibres in a low viscosity resin by calendering process to manufacture multiscale composites by VARIM. Composites Part B: Engineering, 2012, 43, 3104-3113.	12.0	22
31	Reversible phenomena and failure localization in self-monitoring GNP/epoxy nanocomposites. Composite Structures, 2016, 136, 101-105.	5.8	21
32	Development of brazing process for W–EUROFER joints using Cu-based fillers. Physica Scripta, 2016, T167, 014022.	2.5	20
33	Highly sensitive strain gauges with carbon nanotubes: From bulk nanocomposites to multifunctional coatings for damage sensing. Applied Surface Science, 2017, 424, 213-221.	6.1	20
34	Carbon Nanotube-Doped Adhesive Films for Detecting Crack Propagation on Bonded Joints: A Deeper Understanding of Anomalous Behaviors. ACS Applied Materials & Interfaces, 2017, 9, 43267-43274.	8.0	18
35	Development of bonded joints using novel CNT doped adhesive films: Mechanical and electrical properties. International Journal of Adhesion and Adhesives, 2018, 86, 98-104.	2.9	18
36	Interfacial characterization by TEM and nanoindentation of W-Eurofer brazed joints for the first wall component of the DEMO fusion reactor. Materials Characterization, 2018, 142, 162-169.	4.4	18

#	Article	IF	CITATIONS
37	Fatigue crack growth identification in bonded joints by using carbon nanotube doped adhesive films. Smart Materials and Structures, 2020, 29, 035032.	3.5	18
38	Ultrasensitive and highly stretchable sensors for human motion monitoring made of graphene reinforced polydimethylsiloxane: Electromechanical and complex impedance sensing performance. Carbon, 2022, 192, 234-248.	10.3	18
39	Oxidation Mechanisms of Copper and Nickel Coated Carbon Fibers. Oxidation of Metals, 2008, 69, 327-341.	2.1	16
40	Analysis of the brazeability of W–W joints using a high temperature Ni-based alloy. Materials & Design, 2014, 54, 900-905.	5.1	16
41	Impact of thermal fatigue on W–W brazed joints for divertor components. Journal of Materials Processing Technology, 2018, 252, 211-216.	6.3	16
42	An approach using highly sensitive carbon nanotube adhesive films for crack growth detection under flexural load in composite structures. Composite Structures, 2019, 224, 111087.	5.8	16
43	Structural health monitoring of a CFRP structural bonded repair by using a carbon nanotube modified adhesive film. Composite Structures, 2021, 270, 114091.	5.8	16
44	Use of carbon nanotubes for strain and damage sensing of epoxy-based composites. International Journal of Smart and Nano Materials, 2012, 3, 152-161.	4.2	14
45	Improvements in W-Eurofer first wall brazed joint using alloyed powders fillers. Fusion Engineering and Design, 2017, 124, 1082-1085.	1.9	14
46	Effect of filtration in functionalized and non-functionalized CNTs and surface modification of fibers as an effective alternative approach. Composites Part B: Engineering, 2016, 94, 286-291.	12.0	13
47	High heat flux performance of W-Eurofer brazed joints. Journal of Nuclear Materials, 2018, 499, 225-232.	2.7	13
48	Surface Modifications of Carbon Fiber Electrodes for Structural Supercapacitors. Applied Composite Materials, 2022, 29, 889-900.	2.5	13
49	Thermomechanical characterisation of W-Eurofer 97 brazed joints. Journal of Nuclear Materials, 2020, 542, 152504.	2.7	12
50	Hydrothermal ageing on self-sensing bonded joints with novel carbon nanomaterial reinforced adhesive films. Polymer Degradation and Stability, 2020, 177, 109170.	5.8	12
51	Flexible Wearable Sensors Based in Carbon Nanotubes Reinforced Poly(Ethylene Glycol) Diglycidyl Ether (PEGDGE): Analysis of Strain Sensitivity and Proof of Concept. Chemosensors, 2021, 9, 158.	3.6	12
52	Wearable Sensors Based on Graphene Nanoplatelets Reinforced Polydimethylsiloxane for Human Motion Monitoring: Analysis of Crack Propagation and Cycling Load Monitoring. Chemosensors, 2022, 10, 75.	3.6	12
53	Modifications induced in photocuring of Bis- GMA/TEGDMA by the addition of graphene nanoplatelets for 3D printable electrically conductive nanocomposites. Composites Science and Technology, 2019, 184, 107876.	7.8	11
54	Exploring the mechanical and sensing capabilities of multi-material bonded joints with carbon nanotube-doped adhesive films. Composite Structures, 2019, 229, 111477.	5.8	11

#	Article	IF	CITATIONS
55	Development of self passivating W-Eurofer brazed joints. Fusion Engineering and Design, 2019, 146, 1810-1813.	1.9	11
56	Evaluation of sensitivity for detecting different failure modes of epoxy matrix composites doped with graphene nanoparticles. Composite Structures, 2019, 225, 111167.	5.8	10
57	Sensitive response of GNP/epoxy coatings as strain sensors: analysis of tensile-compressive and reversible cyclic behavior. Smart Materials and Structures, 2020, 29, 065012.	3.5	10
58	Thermomechanically Robust Ceramic/Polymer Nanocomposites Modified with Ionic Liquid for Hybrid Polymer Electrolyte Applications. ACS Applied Energy Materials, 2022, 5, 4247-4258.	5.1	10
59	Monitoring crack propagation in skin-stringer elements using carbon nanotube doped adhesive films: Influence of defects and manufacturing process. Composites Science and Technology, 2020, 193, 108147.	7.8	9
60	Crack sensing mechanisms of Mode-II and skin-stringer joints between dissimilar materials by using carbon nanotubes. Composites Science and Technology, 2021, 201, 108553.	7.8	8
61	Easy-Scalable Flexible Sensors Made of Carbon Nanotube-Doped Polydimethylsiloxane: Analysis of Manufacturing Conditions and Proof of Concept. Sensors, 2022, 22, 5147.	3.8	8
62	Effect of Cr and V coatings on W base material in W-Eurofer brazed joints for fusion applications. Fusion Engineering and Design, 2020, 159, 111748.	1.9	7
63	Application of atomic force microscopy to the study of blown polyethylene films. Polymer Testing, 2012, 31, 136-148.	4.8	5
64	Microstructural and mechanical characterization of self-passivating W-Eurofer joints processed by brazing technique. Fusion Engineering and Design, 2021, 169, 112496.	1.9	5
65	Joining of self-passivating W-Cr-Y alloy to ferritic-martensitic steel by hot isostatic pressing. Fusion Engineering and Design, 2021, 170, 112499.	1.9	5
66	GNPs Reinforced Epoxy Nanocomposites Used as Thermal Interface Materials. Journal of Nano Research, 2016, 38, 18-25.	0.8	4
67	Development of W-composites/EUROFER brazed joints for the first wall component of future fusion reactors. Physica Scripta, 2017, T170, 014026.	2.5	4
68	Directional Response of Randomly Dispersed Carbon Nanotube Strain Sensors. Sensors, 2020, 20, 2980.	3.8	4
69	Mechanical and Crack-Sensing Capabilities of Mode-I Joints with Carbon-Nanotube-Reinforced Adhesive Films under Hydrothermal Aging Conditions. Nanomaterials, 2020, 10, 2290.	4.1	3
70	In-Situ SEM Fracture Analysis of W-Eurofer Brazed Joints Under Three-Point Bending Test Configuration. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 3488-3496.	2.2	3
71	Interacción entre el aluminio fundido y las fibras de carbono recubiertas con cobre y nÃquel en materiales compuestos de matriz metA¡lica. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2004, 43, 409-412.	1.9	3
72	Cathodoluminescence study of GaN-infilled opal nanocomposites. Physica Status Solidi A, 2003, 195, 282-285.	1.7	2

#	Article	IF	CITATIONS
73	Study of the Fe-Ti/W system for joining applications in high-temperature fusion reactor components. Fusion Engineering and Design, 2016, 108, 48-54.	1.9	2
74	Strain Sensing Based on Multiscale Composite Materials Reinforced with Graphene Nanoplatelets. Journal of Visualized Experiments, 2016, , .	0.3	2
75	Electrical Monitoring as a Novel Route to Understanding the Aging Mechanisms of Carbon Nanotube-Doped Adhesive Film Joints. Applied Sciences (Switzerland), 2020, 10, 2566.	2.5	2
76	Microstructural and Mechanical Characterization of W-CuCrZr Joints Brazed with Cu-Ti Filler Alloy. Metals, 2021, 11, 202.	2.3	2
77	Analysis of strain sensitivity under flexural load of 3D printed carbon nanotube-doped epoxy circuits. Nanotechnology, 2021, 32, 185501.	2.6	2
78	A preliminary study on self sensing composite structures with carbon nanotubes. , 2017, , .		1
79	S/TEM examination and nanomechanical response of W-Eurofer joints brazed with Cu interlayers. Nuclear Materials and Energy, 2022, 31, 101155.	1.3	1
80	Development of a brazing procedure to join W-2Y ₂ O ₃ and W-1TiC PIM materials to Eurofer. Physica Scripta, 2020, T171, 014022.	2.5	0
81	Development of flexible filler ribbons by melt spinning for joining W to CuCrZr material for heat sink application. Fusion Engineering and Design, 2022, 181, 113214.	1.9	0